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Work done by External Loads and Strain Energy

« Auniform rod is subjected to a slowly increasing load

» The elementary work done by the load P as the rod
elongates by a small dx is

dW = P dx =elementary work

which is equal to the area of width dx under the load-
deformation diagram.

P U = Ares « The total work done by the load for a deformation x;,

W = I P dx = total work = strain energy
0

p which results in an increase of strain energy in the rod.

By e * In the case of a linear elastic deformation,
| U=LipPx X X

= = W:dex:jkxdx:%kxf:% %, =U
2 0 0

O X X
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Strain Energy Density

o

(@)

« To eliminate the effects of size, evaluate the strain-
energy per unit volume,

U P dx
V AL
€1

u= [oy de, = strainenergy density

€ 0

 The total strain energy density resulting from the

deformation is equal to the area under the curve to &,.

« As the material is unloaded, the stress returns to zero

but there is a permanent deformation. Only the strain
energy represented by the triangular area is recovered.

« Remainder of the energy spent in deforming the material

IS dissipated as heat.



Strain Energy Density

g

Modulus
of toughness

Rupture

O

Modulus

L~ ..
o of resilience

)
1

The strain energy density resulting from
setting &, = & iIs the modulus of toughness.

The energy per unit volume required to cause
the material to rupture is related to its ductility
as well as its ultimate strength.

If the stress remains within the proportional
limit,
& 2 2
U= [Eég dgszgl =91
. 2 2E
The strain energy density resulting from

setting o, = oy is the modulus of resilience.

O -
Uy = oE " modulus of resilience



Strain Energy due to Normal Stresses

* In an element with a nonuniform stress distribution,
i AU dU

u= Ilim =
AV 0 AV dV

U= ju dV = total strain energy

 For values of u <uy, i.e., below the proportional
limit,
o
U = | -2dV =elastic strainener
J52 gy

« Under axial loading, oy, =P/A  dV =Adx

« For a rod of uniform cross-section,
2
u-FPL
2 AE




Strain Energy due to Normal Stresses

 Fora beam subjected to a bending load,

'Wﬂ U] Ziav = (MY v

I
' 1B
|
|
|
L;.\-—H  Setting dV = dA dx,
My L 2.2 L np2
Ox ="~ U:HM yszolx:jM—2 [ y2dA |dx
5 A 2El 5 2E1°( 4
L \,2
=I%dx
0
P
e For an end-loaded cantilever beam,
B
AT O M =-Px
- L - L_PAE PR

) oE YT R
0



Strain Energy due to Shearing Stresses

 For a material subjected to plane shearing

Fie stresses,
.———"" i
/ f
/ u= jfxy d7xy
0
2 Yy
Ty _ » For values of 7, within the proportional limit,
2
1,2 _1 _ Txy
U=261y =2Ty 7y =55
 The total strain energy is found from
O Yy U= .U dv
2
T
_ [ Y qv

' 2G



Strain Energy due to Shearing Stresses

 Fora shaft subjected to a torsional load,
2 2

U = j 0 IZG[I} dv

« Setting dV = dA dx,

 In the case of a uniform shaft,

T
2GI
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Strain Energy due to Shearing Stresses

« Forabeam subjected to a bending load,

e

| L . "« Setting dV = dA dx,
\ — ,
“ et 1 F88:

- :FSSZ U_IOIAZG( ij dAdx

Y 1Lb ,
= j : j dAdx

« Define the form factor for shear ZGI
f :A (ij dA  In terms of the form factor
> 12Ja( b

 Dimensionless

ZGA

 Unique for each specific cross-
sectional area

11



Form Factors for Shear

» The form factor for rectangular cross-section

L
g () o

e The form factor for circular cross-section

f, = (”d2/4)2 Id/z Mdd/:y (d%_yz)j: dz |dy ~1.08
(red* f6a)" 002 Sy (d%_yz)

« For thin-walled circular tubes: fq = 1.95.

« For thin-walled square tubes: fq = 2.35.

12



Strain Energy due to Bending & Transverse Shear

e For an end-loaded cantilever beam

 The total strain energy due to both
bending and transverse shear

2,2 2 213 2
U=U. +U. IPX +L§P dXZPL+3PLA
05 2GA 6El  5GA

213 213 2
PL[l 18EI}_PL{1 3Eh}

= + = +
oEl 5GAL? oEl 10GL?
e For steel, take E/IG = 2.6
o For h/L = 3EhL ~0.0312 oFor h/L=1/6: 3EhL = 0.0217
2 2
o For h/L=1/8: - SER ~=0.0122 o For h/L=1/10: - SER —=0.0078

« The strain energy due to transverse shear is of importance only
In the case of very short deep beams, i.e., for large h/L ratios.

13



Strain Energy due to a General State of Stress

 Previously found strain energy due to uniaxial stress and plane
shearing stress. For a general state of stress,
1
§(Gx5x TOyEy TOz287 T TxyVxy T TyzVyz T szsz)
 With respect to the principal axes for an elastic, isotropic body,
u= % [a§ + aﬁ + Jg ~2v(o 40y + opo; + 0:0, )]
= Uy, +Uqg
J 1-2v
Y=
1
12G

U=

(o4 + op + 0 )? =due to volume change

Ug =——|(cq —0p ) + (0 — 0 ) + (0 — aa)z]z due to distortion
« Basis for the maximum distortion energy failure criteria,

2
Ug < ud)Y G Y for a tensile test specimen

14



Work and Energy under a Single Load

\ « Strain energy may also be found from
| the work of the single load P,

-

« For an elastic deformation,

« Previously, we found the strain W = J' Pdx = jkxdx =1kx’ =iPXx
energy by integrating the energy 0 0
density over the volume.

For a uniform rod, - Knowing the equivalence between

. 2 strain energy and work,
U=[udv = j ;—Edv &

_HR/A) g P U=W =x=——=
=) A= P/2 AE

0

15



Work and Energy under a Single Load

o Strain energy may be found from the work of other types of
single concentrated loads.

e Transverse load

Y1
W:'[dez%Ply1
0

3 213
U=4R| = |-
3EI 6El

» Bending Moment

&
W =[Mdo=4iM,6,
0

T

El ) 2EI

Mle_ M 2L

« Twisting Moment

é
W =[Tdg=1T
0

2
U1t TL|_ TL
Gl, ) 2GI,

16



Strain Energy cannot be Superposed

 Asolid circular bar is fixed at one end and free at
the other. Three different loading conditions are to
be considered. For each case of loading, obtain a
formula for the strain energy stored in the bar.
— TaZL
* 26l
U, = sz(L/Z) _ T, L
" 2Gl, 4G,

_TaZ(L/2)+(Ta +Tb )Z(L/Z) B TaZL +TaTb L+ TbZL
© 20l 2GI,  2Gl, 2Gl, 4Gl

p

p

 The strain energy produced by the two loads
acting simultaneously is not equal to the sum
of the strain energies produced by the loads
acting separately.

« Strain energy Is a quadratic function of the

loads, not a linear function.
17



Sample Problem

« |f the strain energy of a structure due to a
single concentrated load is known, then the
equality between the work of the load and
energy may be used to find the deflection.

« Strain energy of the structure,

2 2
u - Feclec | Feplep
2AE 2AE

B F>2|[(o.6)3 + (0.8)3]_ 02647
From the given geometry, 2AE AE
Lgc =0.61 Lgp =0.8l

« Equating work and strain energy,

From statics, 2
Pl

=0.728—
YB AE

18



Sample Problem

p I

0.8 m

1.5m—

A

0.6 m

Members of the truss shown consist of
sections of aluminum pipe with the
cross-sectional areas indicated. Using
E = 73 GPa, determine the vertical
deflection of the point E caused by the
load P.

Solution:

* Find the reactions at A and B from a
free-body diagram of the entire truss.

« Apply the method of joints to
determine the axial force in each
member.

 Evaluate the strain energy of the
truss due to the load P.

« Equate the strain energy to the work
of P and solve for the displacement.

19



p  Solution:

& =218 4 « Find the reactions at A and B from a free-body

2 diagram of the entire truss.
Ac=-21P/8 A =P  B=21P/8

B=21P18 B
» Apply the method of joints to determine the
. axial force in each member.
B ‘ 15 5 Feop=0 -
I G2l F\( C r(l —y S I l—‘ \D CD I DI — _I_:I)
.......——F!--;o E =-——— ‘i_ \ S :.F‘_\/)
L : g "
-~ 15 | 3\ 8 B==F | ¥gg—=t
Fpi L Bep @ e 15 — () —fr—
Fgp D B
_ 17 _, 15 _5 —
Foe =4 Fac =+32P Fpg =>P Fag =0
15 — _ 2
Feg =+2P Fcp =0 Fce =-4P

20



@ P = 40 kN o
M 2 FFL,
F C E ember F, L,m A, m -
i

AB 0 0.8 500 X 10°° 0
AC +15P/8 0.6 500 X 107° 4 219pP?
AD +5P/4 1.0 500 % 107° 3 125P?
BD —21P/8 0.6 1000 X 10°° 4 134P?
CD 0 0.8 1000 X 107 0
CE +15P/8 1.5 500 X 107 10 547P?
0.6 m i DE —17P/8 1.7 1000 X 107° 7 677P*

« Evaluate the strain energy of the < Equate the strain energy to the work by P

truss due to the load P. and solve for the displacement.
Z Z FL, IPye =U
2 E 2E ;
A‘ A oo _2 29700P*
::!5(29700P2) E7p TP 2E
2E
3 3
Ve = (29.7 x10 X40><10 ) Ve —16.27mm

73x10°

21




Sample Problem

\;T

diam. = nd

diam. = d

« Determine the angle of twist
at end D of the shaft by
equating the strain energy to
the work done by the load.

e Solution

T*(L/2)
2GI,

1( 1]T2L

=—|1+—

2 n* ) 2GlI,
T/2 2 n* )Gl

2 4
1= L 'U2 :EUI’U3 :ﬂul’un = N —:1
2GI, 32 81 2n

]

TL 17 41
¢1 _G—|p’¢2 —§¢1’¢3 _a¢1’¢n -

T°(L/2)
2G(n‘l,)

Un :UDC +UCB =

Ul

n* +1

2n*

 For a given allowable stress,
Increasing the diameter of portion
BC of the shaft results in a decrease
of the overall energy-absorbing
capacity of the shaft. .



Sample Problem

« Determine the angle of twist
at end A of the shaft by
equating the strain energy to
the work done by the load.

e Solution

X
d, =dA+E(dB—dA)

d? *
| =x = (dA#(dB—dA)j

32 32 L
U-[" T “dx
b 2GI,,
L T *dx
Jo T X 4
zeﬁ(dﬁt(dB_dA)j
16T L 1 1
e & )
U 32TL 1 1
¢A:T/2:3nG(dB—dA)[d§_d§j

23



Sample Problem

P Solution:

« Determine the reactions at A and B
from a free-body diagram of the
complete beam.

« Develop a diagram of the bending

- L > moment distribution.
Taking into account only the normal * Integrate over the volume of the
stresses due to bending, determine the beam to find the strain energy.
vertical displacement at cross-section D of
the beam for the loading shown. « Find the vertical displacement at D

by equating the work done by the
transverse force to the strain energy.

24



A

Solution:

« Determine the reactions at A and B
from a free-body diagram of the
complete beam.

R
AT L

« Develop a diagram of the bending
moment distribution.

Pb Pa
=—X

Ml M2 :TV

25



P « Integrate over the volume of the beam to find
\ the strain energy

A = e a
i A, G f M M o
4_,@\.71)—> » 2El -, 2El
< L ~ 2 b 2
- 1 J(Pb jdX-l— 1 j(PaX) dx
Over the portion AD, T2E UL 2El1 s\ L
Pb 2 (243  A2R3 2,212
e :2; FCZ (b: +asb j: Fe)aEalf2 (a+b)
Over the portion BD,
Pa P*a’b’
M, =X YT
L

 Find the vertical displacement at D by equating the work done by the transverse
force to the strain energy.

U Pa’m’
P/2  3EIL

Yo =

26



Sample Problem

« Solution
/\ M = Pr(1-coso)
r LM2ds = (Pr(1- cosé?)) rdo
4 | o 2El _J
P2r3
P = 2E jo (1-cos@)’ d@
« Determine the vertical _3zP°r
displacement at A. Only 4El 3
consider the strain energy y, = 37Pr
due to bending. Assume P/2  2El

constant flexural rigidity
El

27



Work and Energy under Several Loads

B« Deflections of an elastic beam subjected to two
concentrated loads,

X1 =X1 + %2 =1 + 0P
Xp =Xp1 + Xpp = a1 PR +anP;
« Compute the strain energy in the beam by

evaluating the work done by slowly applying
P, followed by P,,

2 2
U= %(allpl +201R P +apnP; )

 Reversing the application sequence yields

2 2
U =%(0522P2 + 201 PR + oA )

« Strain energy expressions must be equivalent.
It follows that a,,=a,, (Maxwell’s reciprocal
theorem).

28



Castigliano’s Second Theorem

B« Strain energy for any elastic structure
subjected to two concentrated loads,

2 2
U= %(Ollll:ﬁ_ + 20!12 P1P2 + 99 P2 )

« Differentiating with respect to the loads,

oU
= =P+ ogpPo = X
5P1 1171 1272 1
oU
= — P tapPy =X
apz 1271 2272 2

* Castigliano’s theorem: For an elastic structure
subjected to n loads, the deflection y; of the

Carlo Alberto Castigliano (9 point of application of P; can be expressed as
November 1847 — 25 October 1884) oU oU ou
Italian mathematician and physicist. Yi = 8_PJ and 0, = GVJ 9, = 8_TJ

29



Castigliano’s Second Theorem

 Castigliano’s theorem 1s simplified if the differentiation w.r.t. the
load Is performed before the integration or summation.

* For tension / compression
T e il
2A1E ' oP, ‘T AE P

e For torsion

L T? oU . T oT
= dx

U: O—dX’ ¢J:—_ 0__
261 aT, %Gl T,

« For bending

oU =M o
R peatl
02E| oP. 4 El 0

30




Sample Problem

e Solution
T, =T +1X

U - LTXZdX —IL(T +'[X)2 dx
S Jo2Gl, o 26l

p

_ 1 [(T?+2Ttx+12x* ) dx
2G| e

CTAL+TH? +t2°/3

» Determine the angle of twist B 2G|
at end A of the shaft.

P
~oU  TL+tL%/2
oT Gl

P

Pe

 Alternatively

U oy T, T, IL(T+tx)

=

2
iy — T+ /2
Gl, oT

0 G, Gl

Pe

P
31



Sample Problem

« The cantilever beam AB supports a uniformly distributed load w and a
concentrated load P as shown. Knowing that L =2 m, w =4 kKN/m, P = 6 kN,
and ElI =5 MNm?, determine the deflection at A.

« Solution ’[’
IRRRRERRREN)
A . ﬁEB:
M :—(Px+éwx2j:a—M:—x I
2 oP ’
U tMoM 1 ( j - (Plﬁ WL“J
= Ya=—5 =), = 5 X Px+ WX Xdx = +
oP W EIP  EI EIl 3 8

3. n3 3 Al
1 {6><10 X 2 Jr4><1O X 2 }:4.8mm¢

T 5x10° 3

32



Statically Indeterminate Truss

« Aload P is supported at B by three rods of the same

material and the same cross-sectional area A. Determine the
axial force in each rod.

« Solution n,l Fegn= Ry

C H Y =" '
Q
‘ B

Fun @FBH =1 :
l)
(FBH — RH SEH
1 Foc =0.6P—06R, =1~ =06
F., =0.8R, —0.8P -
OFep =0.8

33



U O FL oF
R, 4 AE 0R,
— |:BH I_BH al:BH + |:BC LBC 6FBC + |:BD I_BD aFBD
AE R, AE R, AE 4R,
(R,)(05L)(1)
——| +(0.6P-0.6R, )(0.6L)(~0.6)
+(0.8R, —0.8P)(0.8L)(0.8)

F,, =0.593P
— R, =0.593P = { F,. =0.244P
F._ =-0.326P

O:yH

\

34



Statically Indeterminate Shafts

- Determine (a) the reactive torques at the ends, (b) the angle of
rotation at the cross section where the load T, Is applied.

_:a_u ZT L oT, _ Tl 0T, | TelLs 0T,
Gl o, Gl, dT, Gl  aT,
:TALA 0T, +(T0 _TA)LB 5(T0 _TA) :TALA _(TO _TA)LB
Gl,, dT, Gl g oT, Gl,, Gl g
_(To-Te)La0(To—Te) Tolp 0Ty _ (To=Te)Ln  Toly
Gl,, T, GIpB 0T, Gl,, Gl g

O:¢A

O:¢B

35



Statically Indeterminate Shafts

LI L, I
=T, = PR T, T.= AR T
Lol n + Lol g Lol a+ Lol g
g = T,.L, OT, +TB Ly 0Ty _ L,L.T, _TuLy _Tels

Gl,, 0T, Gl 0T,  G(Lgl,,+L,]

B pA A" pB

) Gl,, Gl

« For the special case of d, = dg:

L L
:>TA=TBTO, Ts :TATO
LaLeTo _ Tals _ Toly

36



Statically Indeterminate Beams

« Determine the reactions at the supports for the
prismatic beam and loading shown.

« Solution
oM _
R,
o=y, = Ml _ptMM = i
R, 0 El R, ya =0 ' . )
3 4
_ 1 L(RAX—EWX jxdx: LRl _wL R,
El Jo 2 EIl 3 8
RB:§wL 1
3 8
:>RA:§WL T . 1
MB:ng2 ™

37



Statically Indeterminate Beams

« For the uniform b d loading shown, T
determine the reactions at the supports, 44 L 1A LI 4 14 LT |

Solution:
1. Basic determinate system:

3. Portion AB of the beam:

Hl D

1 aI\/Il ; (x ‘.Il

M, =R, Xx—=wx’ = = X
| 2 OR,
1 LMlaMldx
El o " 0OR,
2. From static equilibrium: 1 oL 1 1 (R, wL
o 3 = — o(RAX__WXZdeXZ ( A —
RB :ZWL_BRA; RC :_ZWL+2RA El El 3 38



4. Portion CB of the beam:

M, :(ZRA—EWLJX—EWXZ = oM, = 2X
4 2 A X TWX
1L M, Y 3 1 el
— , :—j (ZR X ——WLX — = wX j 2x)d '
El J0 OR, 4 2
1 (R, 5wl ! ¢ i ‘
_ _ [
EI\ © 64
5. Reaction at A: I R
1 (R wl) 1(R,® 5wl = X
O:yA: — + —
EI{ 3 8 EIl 6 64
R, = 9wt - 3R, BECYEE
13 32
:>RA=§WL T =4 ; .
R.=—-wL+2R,=—wL 7T

39



Method of Dummy Load

» The cantilever beam AB supports a uniformly
distributed load w. Determine the deflection and

o Oy

- 1 -
4

1. Apply a dummy force Q, at A: I—I——IB]

_ 1., oM _ 1 .
Mo ]

B oU B LM@—MdX A W q

2 75q, b Era, - L

1 (L 1 .,
=—| | “QX—=wx" |(—X)dX
= ( Qux=3 j( )
2. Set the dummy force Q, as zero:
4
( Q/X——WX) dx_i L(—wazj(—x)dx:+WL
El 2 SEl

Note: since the dummy load points downward, + indicates downward deflection at A.

40




3. Apply a dummy moment M, at A: e —

1, oM (\l ARRERERENEN

M=-M, —=wx’ = —— =1 A B
2 8MA

1 oof |
= _[ — | | -M,—=wx* |(-1)dx
El 8M EI 0 2
4. Set the dummy moment M, as zero:
1 oL 1 1 ¢ 1 wlL?
0, =—| | —-M{—=wx® |(-1)dx=—| | —=wx® |(-1)dx=+— T
AEIO(WZ j() EIO(Z j() 6El

Note: since the dummy moment acts counter clockwise, + indicates counter
clockwise rotation of cross-section A.

L1 1 (L, 1 o 1
Ya=—=r], (——wxzj(—x)dx:afo MMdx; HA:EJ-O (—E

M : bending moment in beam developed by real loads.

M : fictitious moment in beam developed by a unit dummy load (force/moment)
applied at a point of interest.




Sample Problem

P“"v\‘ Solution:
E ¢ ‘ « For application of Castigliano’s theorem,

E

T Introduce a dummy vertical load Q at C.
Find the reactions at A and B due to the
dummy load from a free-body diagram of
the entire truss.

1 1.5m—

0.6m « Apply the method of joints to determine

Members of the truss shown the axial force in each member due to Q.

consist of sections of aluminum « Combine with the results of previous
pipe with the cross-sectional areas example to evaluate the derivative with
Indicated. Using E =73 GPa, respect to Q of the strain energy of the
determine the vertical deflection of truss due to the loads P and Q.

the joint C caused by the load P. _
 Setting Q =0, evaluate the derivative

which is equivalent to the desired
displacement at C.

42



Solution:

 Find the reactions at A and B due to a dummy load Q
at C from a free-body diagram of the entire truss.

Ac=-2Q A/=Q B=3Q

» Apply the method of joints to determine the axial
force in each member due to Q.

F ) \
F\D\ CD q F( oy S () \P\])
()

FI 3D — Flil)
<]

0.6 m FCE — FDE — O

FAC =0; FCD =-Q
FAB =0; FBD 4Q’ FAD %Q

1 1

43



P = 40 kN FL)\oF,
Member F, oF;/0Q L,m A, m? (T)a_d
/]
LA C VE
P T AB 0 0 0.8 500 X 107 0
L AC +15P/8 0 0.6 500 x 107¢ 0
bim 4p +5P/4 + 5Q/4 2 1.0 500 X 107 | +3125P +3125Q
BD —21P/8 — 3Q/4 —1 0.6 1000 X 1076 | +1181P + 338Q
CD ) -1 0.8 1000 X 107° + 8000
CE +15P/8 0 1.5 500 X 107 0
e DE —17P/8 0 1.7 1000 X 107 0
0.6 m

« Combine with the results of previous example to evaluate the derivative
with respect to Q of the strain energy of the truss due to the loads P and Q.

~FRLoF P+Q JLo(R+Q) 1
yC_ZEA % Z 0 E(43O6P+4263Q)

 Setting Q =0, evaluate the derivative which is equivalent to the desired
displacement at C.

. ‘Z% Q ~ 4306(40x10°N))
© EA | 6Q |, 73x10°Pa

B—%} = F. : axial forces developed in individual members under a unit
Q=0 load applied at joint C. FL =
PP J Yo = Z# F

AE 44

yc =2.36 mmi




Method of Unit Dummy Load

 For an elastic structure, the deflection of a particular point can be found by
applying a unit dummy load at the point of interest

« Tension/compression  Bending « Torsion
| Sy B P
%!r :E DI ) B
L] ._E D 1 (1 —>f= b $
£—% T
- I - ]
2
n Fi2 Li U :J‘ M dX
= 2El
=1 2EA1 LO _
FL = _{ MM
-SOHF y=| ——dx

45



Sample Problem

] « Determine the angle of
B i g
twist at cross-section B
of the shaft.

46
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