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1. The displacement field in a homogeneous, isotropic 

circular shaft twisted through angle   at one end is 

given by 
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1) Calculate the matrix of components of the deformation gradient tensor 

2) Calculate the matrix of components of the Lagrange strain tensor. Is the strain tensor a function of 

x3 ? Why? 

3) Find an expression for the increase in length of a material fiber of initial length dl, which is on the 

outer surface of the cylinder and initially oriented in the e3 direction. 

4) Show that material fibers initially oriented in the e2 direction do not change their length. 

5) Calculate the principal values and directions of the Lagrange strain tensor at the point 

x a x x1 2 30 0  , , . Hence, deduce the orientations of the material fibers that have the 

greatest and smallest increase in length. 

6) Calculate the components of the infinitesimal strain tensor. Show that, for small values of  , the 

infinitesimal strain tensor is identical to the Lagrange strain tensor, but for finite rotations the two 

measures of deformation differ.  

7) Use the infinitesimal strain tensor to obtain estimates for the lengths of material fibers initially 

oriented with the three basis vectors. Where is the error in this estimate greatest? How large can   

be before the error in this estimate reaches 10%? 

2. An initially straight beam is bent into a circle with radius R as shown 

in the figure. Material fibers that are perpendicular to the axis of the 

undeformed beam are assumed to remain perpendicular to the axis 

after deformation, and the beam’s thickness and the length of its axis 

are assumed to be unchanged. Under these conditions the 

deformation can be described as 

 1 2 1 2 2 1sin( / ) ( )cos( / )y R x x R y R R x x R      

where, as usual x is the position of a material particle in the 

undeformed beam, and y is the position of the same particle after deformation. 

1) Calculate the deformation gradient field in the beam, expressing your answer as a function of 

1 2,x x , and as components in the basis 1 2 3{ , , }e e e  shown. 

2) Calculate the Lagrange strain field in the beam. 

3) Calculate the infinitesimal strain field in the beam. 
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4) Compare the values of Lagrange strain and infinitesimal strain for two points that lie at 

1 2( 0, )x x h   and 1 2( , 0)x L x  . Explain briefly the physical origin of the difference between 

the two strain measures at each point. Recommend maximum allowable values of h/R and L/R for 

use of the infinitesimal strain measure in modeling beam deflections. 

5) Calculate the deformed length of an infinitesimal material fiber that has length 0l  and orientation 

1e  in the undeformed beam. Express your answer as a function of 2x . 

6) Calculate the change in length of an infinitesimal material fiber that has length 0l  and orientation 

2e  in the undeformed beam. 

7) Show that the two material fibers described in 5） and 6) remain mutually perpendicular after 

deformation. Is this true for all material fibers that are mutually perpendicular in the undeformed 

solid?  

8) Find the components in the basis 1 2 3{ , , }e e e  of the Left and Right stretch tensors U  and V  as 

well as the rotation tensor R  for this deformation. You should be able to write down U  and R 

by inspection, without needing to wade through the laborious general process outlined in class 

notes. The results can then be used to calculate V . 

9) Find the principal directions of U  as well as the principal stretches. You should be able to write 

these down using your physical intuition without doing any tedious calculations.  

10) Let 1 2 3{ , , }m m m  be a basis in which 1m  is parallel to the axis of the deformed beam, as shown 

in the figure. Write down the components of each of the unit vectors im  in the basis 1 2 3{ , , }e e e .  

Hence, compute the transformation matrix ij i jQ  m e  that is used to transform tensor 

components from 1 2 3{ , , }e e e  to 1 2 3{ , , }m m m . 

11) Find the components of the deformation gradient tensor, Lagrange strain tensor, as well as U   

V  and R  in the basis 1 2 3{ , , }m m m . 

12) Find the principal directions of V  expressed as components in the basis 1 2 3{ , , }m m m . Again, 

you should be able to simply write down this result. 

 

3. The figure shows a test designed to 

measure the response of a polymer to 

large shear strains. The sample is a 

hollow cylinder with internal radius 0a  
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and external radius 1a . The inside diameter is bonded to a fixed rigid cylinder. The external diameter is 

bonded inside a rigid tube, which is rotated through an angle ( )t . Assume that the specimen deforms as 

indicated in the figure, i.e. (a) cylindrical sections remain cylindrical; (b) no point in the specimen moves 

in the axial or radial directions; (c) that a cylindrical element of material at radius R  rotates through 

angle ( , )R t  about the axis of the specimen. Take the undeformed configuration as reference. Let 

( , , )R Z denote the cylindrical-polar coordinates of a material point in the reference configuration, and let 

{ , , }R Ze e e be cylindrical-polar basis vectors at ( , , )R Z . Let ( , , )r z  denote the coordinates of this 

point in the deformed configuration, and let { , , }r ze e e by cylindrical-polar basis vectors located at 

( , , )r z .  

1) Write down expressions for ( , , )r z  in terms of ( , , )R Z (this constitutes the deformation 

mapping) 

2) Let P denote the material point at ( , , )R Z  in the reference configuration. Write down the 

reference position vector X of P, expressing your answer as components in the basis { , , }R Ze e e . 

3) Write down the deformed position vector x of P, expressing your answer in terms of ( , , )R Z and 

basis vectors { , , }R Ze e e . 

4) Find the components of the deformation gradient tensor F in { , , }R Ze e e .  (Recall that the 

gradient operator in cylindrical-polar coordinates is 
1
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5） Show that the deformation gradient can be decomposed into a sequence  F R S  of a simple shear 

S  followed by a rigid rotation through angle   about the Ze  direction R.  In this case the 

simple shear deformation will have the form 

R R Z Z Rk     S e e e e e e e e  

where k  is to be determined. 

6） Find the components of F in { , , }r ze e e .  

7） Verify that the deformation is volume preserving (i.e. check the value of J=det(F)) 

8） Find the components of the right Cauchy-Green deformation tensors in { , , }R Ze e e   
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9） Find the components of the left Cauchy-Green deformation tensor in { , , }r ze e e  

10） Find 
1F  in { , , }R Ze e e .   

11） Find the principal values of the stretch tensor U 

12） Write down the velocity field v in terms of ( , , )r z  in the basis { , , }r ze e e  

13） Calculate the spatial velocity gradient L in the basis { , , }r ze e e  

4. A spherical shell (see the figure) is made from an incompressible 

material. In its undeformed state, the inner and outer radii of the 

shell are ,A B . After deformation, the new values are ,a b . The 

deformation in the shell can be described (in Cartesian components) 

by the equation 
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1） Calculate the components of the deformation gradient tensor 

2） Verify that the deformation is volume preserving 

3） Find the deformed length of an infinitesimal radial line that has initial length 0l , expressed as a 

function of R 

4） Find the deformed length of an infinitesimal circumferential line that has initial length 0l , 

expressed as a function of R  

5） Using the results of 3) and 4), find the principal stretches for the deformation. 

6） Find the inverse of the deformation gradient, expressed as a function of iy . It is best to do this by 

working out a formula that enables you to calculate ix  in terms of iy  and i ir y y  and 

differentiate the result. 

7） Recalculate 1) to 6), but this time solve the problem using spherical-polar coordinates, using the 

various formulas for vector and tensor operations given in lecture notes. In this case, you may 

assume that a point with position RRx e  in the undeformed solid has position vector 

 
1/3
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after deformation. 

 


