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Introduction

• Previously considered distributed forces which were proportional to the 

area or volume over which they act.  

- The resultant was obtained by summing or integrating over the 

areas or volumes.

- The moment of the resultant about any axis was determined by 

computing the first moments of the areas or volumes about that 

axis.

• Will now consider forces which are proportional to the area or volume 

over which they act but also vary linearly with distance from a given axis.

- It will be shown that the magnitude of the resultant depends on the 

first moments of the force distribution with respect to the axis.

- The point of application of the resultant depends on the second 

moments of the distribution with respect to the axis.

• Current chapter will present methods for computing the moments and 

products of inertia for areas.
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Moments of Inertia of an Area

• Consider distributed forces whose magnitudes are 

proportional to the elemental areas on which they 

act and also vary linearly with the distance of 

from a given axis.
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• Example:  Consider a beam subjected to pure bending.  

Internal forces vary linearly with distance from the 

neutral axis which passes through the section centroid. 
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• Example:  Consider the net hydrostatic force on a 

submerged circular gate.
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Moments of Inertia of an Area by Integration

• Second moments or moments of inertia of 

an area with respect to the x and y axes,

  dAxIdAyI yx
22

• Evaluation of the integrals is simplified by 

choosing dA to be a thin strip parallel to 

one of the coordinate axes.

• For a rectangular area,
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• The formula for rectangular areas may also 

be applied to strips parallel to the axes,
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Polar Moments of Inertia

• The polar moments of inertia is an important 

parameter in problems involving torsion of 

cylindrical shafts and rotations of slabs.
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• The polar moments of inertia is related to the 

rectangular moments of inertia,
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Radius of Gyration of an Area

• Consider area A with moments of 

inertia Ix.  Imagine that the area is 

concentrated in a thin strip parallel to 

the x axis with equivalent Ix.
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ix = radius of gyration with respect 

to the x axis

• Similarly,
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Sample Problem

Determine the moments of 

inertia of a triangle with respect 

to its base.

SOLUTION:

• A differential strip parallel to the x axis is chosen for 

dA.
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• For similar triangles,
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• Integrating dIx from y = 0 to y = h,
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Sample Problem

a) Determine the centroidal polar 

moments of inertia of a circular 

area by direct integration.

b) Using the result of part a, 

determine the moments of inertia 

of a circular area with respect to a 

diameter.

SOLUTION:

• An annular differential area element is chosen,
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• From symmetry, Ix = Iy,
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Parallel Axis Theorem

• Consider moments of inertia I of an area A

with respect to the axis AA’

2

AAI y dA  

• The axis BB’ passes through the area centroid 

and is called a centroidal axis.
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• For a group of parallel axes, the moment of inertia reaches the minimum value 

when the reference axis is the centroid axis.



Parallel Axis Theorem

• Moments of inertia IT of a circular area with 

respect to a tangent to the circle,
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• Moments of inertia of a triangle with respect to a 

centroidal axis,
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Moments of Inertia of Common Shapes of Areas

• The moments of inertia of a composite area A about a given axis is 

obtained by adding the moments of inertia of  the component areas 

A1, A2, A3, ... , with respect to the same axis.
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Sample Problem

Determine the moments of inertia 

of the shaded area with respect to 

the x axis.

SOLUTION:

• Compute the moments of inertia of the 

bounding rectangle and half-circle with 

respect to the x axis.

• The moments of inertia of the shaded area 

is obtained by subtracting the moments of 

inertia of the half-circle from the moments 

of inertia of the rectangle.
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SOLUTION:

• Compute the moments of inertia of the bounding 

rectangle and half-circle with respect to the x axis.

Rectangle:
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• The moments of inertia of the shaded area is obtained 

by subtracting the moments of inertia of the half-circle 

from the moments of inertia of the rectangle.

46mm109.45 xI

xI  46mm102.138   46mm103.92 
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Product of Inertia

• Product of Inertia:

 dAxyI xy

• When the x axis, the y axis, or both are an 

axis of symmetry, the product of inertia is 

zero.

• Parallel axis theorem for products of inertia:

AyxII xyxy 

16



Sample Problem

Determine the product of inertia of 

the right triangle (a) with respect 

to the x and y axes and 

(b) with respect to centroidal axes 

parallel to the x and y axes.

SOLUTION:

• Determine the product of inertia using 

direct integration with the parallel axis 

theorem on vertical differential area strips

• Apply the parallel axis theorem to 

evaluate the product of inertia with respect 

to the centroidal axes.
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SOLUTION:

• Determine the product of inertia using direct integration 

with the parallel axis theorem on vertical differential 

area strips
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• Apply the parallel axis theorem to evaluate the 

product of inertia with respect to the centroidal axes.
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3
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With the results from part a,
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Principal Axes and Principal Moments of Inertia

Given









dAxyI

dAxIdAyI

xy

yx
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We wish to determine moments 

and product of inertia with 

respect to new axes x’ and y’.
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• The change of axes yields

• The equations for Ix’ and Ix’y’ are the 

parametric equations for a circle,
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• The equations for Iy’ and Ix’y’ lead to the 

same circle.
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Principal Axes and Principal Moments of Inertia

 
2 2 2

2

2

2 2

x ave x y

x y x y

ave xy

I I I R

I I I I
I R I

    
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   
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• At the points A and B, Ix’y’ = 0  and Ix’ is 

a maximum and minimum, respectively.

RII ave minmax,

 tan 2 2m xy x yI I I   

• Alternatively, the principal moments of 

inertia may be determined by

• The equation for m defines two angles, 

90o apart which correspond to the 

principal axes of the area about O.

21

• One method to determine the principal 

moments of inertia of the area about O 

is to substitute these m back into the 

equation for Ix’.

• The advantage is that we know which of 

the two principal angles corresponds to 

each principal moment of inertia.



Sample Problem

For the section shown, the moments of 

inertia with respect to the x and y axes 

are Ix = 10.38 in4 and Iy = 6.97 in4.

Determine (a) the orientation of the 

principal axes of the section about O,

and (b) the values of the principal 

moments of inertia about O.

SOLUTION:

• Compute the product of inertia with 

respect to the xy axes by dividing the 

section into three rectangles and applying 

the parallel axis theorem to each.

• Determine the orientation of the 

principal axes and the principal 

moments of inertia. 
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SOLUTION:

• Compute the product of inertia with respect to the xy axes 

by dividing the section into three rectangles.

56.6

28.375.125.15.1

0005.1

28.375.125.15.1

in,in. ,in. ,in Area,Rectangle 42







 Ayx

III

II

I

Ayxyx

Apply the parallel axis theorem to each rectangle,

    AyxII yxxy

Note that the product of inertia with respect to centroidal 

axes parallel to the xy axes is zero for each rectangle.

4in 56.6  AyxIxy
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• Determine the orientation of the principal axes and the 

principal moments of inertia. 
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4
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 2
2

2
2

minmax,

56.6
2

97.638.10

2

97.638.10

22








 












 



 xy

yxyx
I

IIII
I

4
min

4
max

in 897.1

in 45.15





II

II

b

a

24



Mohr’s Circle for Moments of Inertia

2

2

2 2

x y x y

ave xy

I I I I
I R I

  
   

 

• The moments and product of inertia for an area 

are plotted as shown and used to construct Mohr’s 

circle,

• Mohr’s circle may be used to graphically or 

analytically determine the moments and product 

of inertia for any other rectangular axes 

including the principal axes.
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Sample Problem

The moments and product of inertia 

with respect to the x and y axes are Ix = 

7.24x106 mm4, Iy = 2.61x106 mm4, and 

Ixy = -2.54x106 mm4.

Using Mohr’s circle, determine (a) the 

principal axes about O, (b) the values of 

the principal moments about O, and (c) 

the values of the moments and product 

of inertia about the x’ and y’ axes

SOLUTION:

• Plot the points (Ix , Ixy) and (Iy ,-Ixy).  

Construct Mohr’s circle based on the 

circle diameter between the points.

• Based on the circle, determine the 

orientation of the principal axes and the 

principal moments of inertia.

• Based on the circle, evaluate the 

moments and product of inertia with 

respect to the x’y’ axes.
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mm1054.2

mm1061.2

mm1024.7







xy

y

x

I

I

I

SOLUTION:

• Plot the points (Ix , Ixy) and (Iy ,-Ixy).  Construct Mohr’s 

circle based on the circle diameter between the points.

 

 

    4622

46

2
1

46

2
1

mm10437.3

mm10315.2

mm10925.4







DXCDR

IICD

IIIOC

yx

yxave

• Based on the circle, determine the orientation of the 

principal axes and the principal moments of inertia.

 6.472097.12tan mm
CD

DX
  8.23m

RIOAI ave max
46

max mm1036.8 I

RIOBI ave min
46

min mm1049.1 I
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46

46

mm10437.3

mm10925.4





R

IOC ave

• Based on the circle, evaluate the moments and product 

of inertia with respect to the x’y’ axes.

The points X’ and Y’ corresponding to the x’ and y’ axes 

are obtained by rotating CX and CY counterclockwise 

through an angle   2(60o) = 120o.  The angle that CX’

forms with the x’ axes is f = 120o - 47.6o = 72.4o.

' cos cos72.4o

y aveI OG OC CY I Rf    

46mm1089.3 yI

' cos cos72.4o

x aveI OF OC CX I Rf    

46mm1096.5 xI

' sin sin 72.4o

x yI FX CY Rf
   

46mm1028.3 yxI

28



Principal Points

• Consider a pair of principal axes with origin at a given point O.

• If there exists a different pair of principal axes through that same point, then every 

pair of axes through that point is a set of principal axes and all moments of inertia 

are the same.

cos 2 sin 2
2 2

sin 2 cos 2
2

x y x y

x xy

x y

x y xy

I I I I
I I

I I
I I

 

 



 

 
  


 

• A point so located that every axis through the point is a principal axis, and hence 

the moments of inertia are the same for all axes through the point, is called a 

principal point.

• In general, every plane area has two principal points. These points lie equidistant 

from the centroid on the principal centroidal axis having the larger principal 

moment of inertia.
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• Apply the concepts described above to axes through the centroid of an area.

• If an area has three or more axes of symmetry, the centroid is a principal point and 

every axis through the centroid is a principal axis and has the same moment of 

inertia. 

• These conditions are fulfilled for a circle, for all regular polygons (equilateral 

triangle, square, regular pentagon, regular hexagon, and so on), and for many other 

symmetric shapes.

• When the two principal centroidal moments of inertia are equal; then the two 

principal points merge at the centroid, which becomes the sole principal point.

Principal Points
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