Moments and Product of Inertia
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Introduction
-
 Previously considered distributed forces which were proportional to the
area or volume over which they act.
- The resultant was obtained by summing or integrating over the
areas or volumes.
- The moment of the resultant about any axis was determined by
computing the first moments of the areas or volumes about that
axis.

« Will now consider forces which are proportional to the area or volume
over which they act but also vary linearly with distance from a given axis.
- It will be shown that the magnitude of the resultant depends on the
first moments of the force distribution with respect to the axis.

- The point of application of the resultant depends on the second
moments of the distribution with respect to the axis.

 Current chapter will present methods for computing the moments and
products of inertia for areas.



Moments of Inertia of an Area

y - Consider distributed forces AF whose magnitudes are

proportional to the elemental areas AA on which they

| act and also vary linearly with the distance of AA
J=tvad from a given axis.

« Example: Consider a beam subjected to pure bending.
Internal forces vary linearly with distance from the
neutral axis which passes through the section centroid.

AF =kyAA
R= kjydAzo IydA:SX = first moment

M =k I y2dA j y*dA = second moment

« Example: Consider the net hydrostatic force on a
submerged circular gate.

AF = pAA = pgyAA
R=pg|ydA
M, = pg | y*dA




Moments of Inertia of an Area by Integration

Y

dA =dxdy

. Second moments or moments of inertia of
s an area with respect to the x and y axes,

I, =[y%dA 1, =[x°dA

dl, = y2dA dl, =x2dA g

dA =y dx . . . . L.

 Evaluation of the integrals is simplified by
choosing dA to be a thin strip parallel to
one of the coordinate axes.

dl, =x2dA

s y  For arectangular area,

h
Iy =[y?dA=[y®bdy = 1bh’
0

« The formula for rectangular areas may also
* be applied to strips parallel to the axes,

di, :%dex dl :xsz:xzydx5

y



Polar Moments of Inertia

» The polar moments of inertia is an important
y parameter in problems involving torsion of
et cylindrical shafts and rotations of slabs.

(”’”" * /Zd‘% 1, = [r*dA

A ‘ >~ « The polar moments of inertia is related to the
o rectangular moments of inertia,

|, = [r’dA=[(x*+y? JdA= [ x*dA+ [ y*dA

=1, +1,




Radius of Gyration of an Area

y  Consider area A with moments of

' inertia 1,. Imagine that the area is
concentrated in a thin strip parallel to
the x axis with equivalent I,.

I
-2 - X
L =itA i =[2

A
y
- I, = radius of gyration with respect
i ey = to the x axis
Y -
0 x O x -« Similarly,
AT 2 ly
] I =1A 1, =,[—
y y y A




Sample Problem

y SOLUTION:

» Adifferential strip parallel to the x axis is chosen for
dA.

dl, =y?dA  dA=Idy

» For similar triangles,

Poh=y gy qacph=Y Y dy
h h

Determine the moments of
inertia of a triangle with respect

to its base. * Integrating dl, fromy=0toy = h,

h
. =[y?dA= Iyzb . L %I(hy2 - y3)dy
0

h
_Q{hy_:;_y_? I _b_h3
0 * 12

“hl 3 4




Sample Problem

a) Determine the centroidal polar
moments of inertia of a circular
area by direct integration.

b) Using the result of part a,
determine the moments of inertia
of a circular area with respect to a
diameter.

SOLUTION:
« An annular differential area element is chosen,
dl, = U’dA dA =27 udu

| =Id|p ZjUZ(ZEU du) = Zﬂ_r[u?’du
0 0

« From symmetry, I, =1,

T 4
|p=|x+|y=2|x EI’ =2|X
T 4
jlxzzr :Idiameter




Parallel Axis Theorem

e Consider moments of inertia | of an area A
with respect to the axis A4’

IM,:jysz

» The axis BB’ passes through the area centroid
and is called a centroidal axis.

| o =J.y2dA=J‘(y’+d)2 dA

=Iy’2dA+W+d2jdA

=, =lg +Ad* =1 + Ad?

 For a group of parallel axes, the moment of inertia reaches the minimum value
when the reference axis is the centroid axis.

10



Parallel Axis Theorem

« Moments of inertia I; of a circular area with

| respect to a tangent to the circle,
: It =T+Ad? =1ar% 4 (zr? )2
T T .y
d=r =Z7Z'r
-

« Moments of inertia of a triangle with respect to a

D D’ centroidal axis,
d'=§h IAA' = |_BB'+Ad2
h
B 2
By ¥ o = L = Ad? = 50° - 3bh(3h)
A *3

A _ 1 ph3
_36bh

11



Moments of Inertia of Common Shapes of Areas

« The moments of inertia of a composite area A about a given axis is
obtained by adding the moments of inertia of the component areas
AL A, A, ..., with respect to the same axis.

Yy Yy
i B
T Ix = Iy = —8'7[1’
Rectangle h o= 3 Semicircle 1_ 4
L 1 ] | p= ZII’T‘
L : 3 x
DU S s
h ’ \ 7’ 1 bh3 Ix = Iy ] %7[1"4
Triangle L *'= 36 Quarter circle | <L
e % _1 N ==nr
L/ \ 3 Ix =12 bh3 p p 8
b — "
)
S e - I = %lzab3
Circle , =% ok Ellipse x I,=na b
|, = %me(a2 + b2)




Sample Problem

SOLUTION:
J « Compute the moments of inertia of the
le—240 ___.I : _ _
/mm C bounding rectangle and half-circle with
r=90mm A respect to the x axis.
120 .

T ~ « The moments of inertia of the shaded area
L _ IS obtained by subtracting the moments of

X inertia of the half-circle from the moments

of inertia of the rectangle.
Determine the moments of inertia

of the shaded area with respect to
the x axis.



a=38.2 mm

b=81.8 mm

4r _(4)90) _ 38.2 mm

3z 3
b=120-a=81.8mm

A=im?=17(90)

—12.72 x10°mm?

SOLUTION:
« Compute the moments of inertia of the bounding

rectangle and half-circle with respect to the x axis.

Rectangle:
I, =1bh® =1(240)120)=138.2x10°mm*

Half-circle:
moments of inertia with respect to 44,

4 4 Y-
Iaa = g2r" =57(90)" =25.76x10°mm
moments of inertia with respect to x’,

I, =1,,—Aa? =25.76x10° —12.72x10° x 38.2?
=7.20x10°mm*
moments of inertia with respect to X,
Iy = I + Ab? =7.20x10° + (12.72x103 |81.8)?

=92.3x10°mm?
14



« The moments of inertia of the shaded area is obtained
by subtracting the moments of inertia of the half-circle
from the moments of inertia of the rectangle.

I = 138.2x10°mm* - 92.3x10°mm?

l, =45.9x10°mm*

15



Product of Inertia

Y
, * Product of Inertia:
il lyy = [ xydA
L/ y
o x it d
e -
| ™>~— « When the x axis, the y axis, or both are an | g
axis of symmetry, the product of inertia is 5
ZEro. ¥ ]
dA’ i ~

« Parallel axis theorem for products of inertia:

lyy = lxy +XYA

16



Sample Problem

y SOLUTION:

Ll  Determine the product of inertia using
direct integration with the parallel axis
theorem on vertical differential area strips

« Apply the parallel axis theorem to
evaluate the product of inertia with respect
to the centroidal axes.

Determine the product of inertia of
the right triangle (a) with respect
to the x and y axes and

(b) with respect to centroidal axes
parallel to the x and y axes.

17



SOLUTION:

y y' « Determine the product of inertia using direct integration
with the parallel axis theorem on vertical differential
area strips

y = h(l—fj dA = ydx = h(1—5jdx
b b
Xe = X Yoy =3y=1n[1-2
el Yel =5Y=5 0
Integrating dl,, from x =0tox =b,

b 2
lyy = [dlyy = [ % ye|dA:jx(%)hz(1—§j dx
0

2 b

b 2 3 2 3 4

e (| AT PO
o2 b 2p 4 3b 8b“ |,

_ 1 RK2RK2
IW_Mbh

18



Apply the parallel axis theorem to evaluate the
gl Y product of inertia with respect to the centroidal axes.

_1 v_1
=3D y=3h

With the results from part a,

Ly = Ixryr + XYA
ey = 4022 ~ (Lb)Lh)Lbh)

_ 1 p2K2
IX”y” = 72b h

19



Principal Axes and Principal Moments of Inertia

» The change of axes yields
|+, 1 -1 _
| = L4 ~c0s26—1,,sin26
2 2
| —1
., =——2sin20+1  cos260
2 Y

: L+l 1 —1 |
|, = -~ >c0s20 + 1, sin 26
2

Given 1, :Iysz Iy =jx2dA « The equations fo_r |..and Ix,y_, are the
parametric equations for a circle,

lxy =[xy dA (1, —1,.) +12, =R?
We wish to determine moments 2
S |+ | —1 ,
and product of inertia with .= Ty R= || —=| +1

respect to new axes x’and y".

Note: x'=xcosf+ysind « The equations for I .and I .. lead to the

y'=ycosd—xsing same circle.

20



Principal Axes and Principal Moments of Inertia

 AtthepointsAand B, 1..=0 and | .is
a maximum and minimum, respectively.

tan26, =-21,,/(1,-1,)
 The equation for 4., defines two angles,

90° apart which correspond to the
principal axes of the area about O.

Ly

» One method to determine the principal

moments of inertia of the area about O
Iinas . IS to substitute these 8, back into the
equation for | ...

» The advantage is that we know which of

ave Xy the two principal angles corresponds to
| +1 RS each principal moment of inertia.
Iave =— : R — . : + Ify . . .
2 2 « Alternatively, the principal moments of

inertia may be determined by

Irnax,min — IaveiR
21



Sample Problem

3 in. —!T

For the section shown, the moments of
Inertia with respect to the x and y axes
are I, =10.38 in*and I, = 6.97 in“.

Determine (a) the orientation of the
principal axes of the section about O,
and (b) the values of the principal
moments of inertia about O.

SOLUTION:

« Compute the product of inertia with
respect to the xy axes by dividing the
section into three rectangles and applying
the parallel axis theorem to each.

« Determine the orientation of the
principal axes and the principal
moments of inertia.

22



SOLUTION:

« Compute the product of inertia with respect to the xy axes
by dividing the section into three rectangles.

Apply the parallel axis theorem to each rectangle,

Ly =2 Ty +XyA)
Note that the product of inertia with respect to centroidal
axes parallel to the xy axes is zero for each rectangle.

Rectangle | Area, in? | x,in. y,in. XYA, in
I 15| -1.25| +1.75 —-3.28

[l 1.5 0 0 0

I 1.5 +1.25| -1.75 —3.28

> XyA=-6.56

ly =Y XyA=-6.56in"

23



|, =10.38in*
.4

ly, =6.971n

ly =—6.56in"

« Determine the orientation of the principal axes and the

principal moments of inertia.

21 _
tan 26, = ——~— = — 2(-6.56)
-1, 1038-697

20,, = 75.4°and 255.4°

=+3.85

6y, =37.7° and 6, =127.7°

I+ 1 =1,
o 2
Imax,min:)(zyi [xzyj "‘Ixy

2
1038 : 6.97, \/(10.382— 6.97) L (6567

|, =l =15.45in*
lp, = lin =1.897in*

24



Mohr’s Circle for Moments of Inertia

« The moments and product of inertia for an area

are plotted as shown and used to construct Mohrs

circle,
2
| +1 —
|.=——, R= A +IX2y
2 2

« Mohr’s circle may be used to graphically or

analytically determine the moments and product
of inertia for any other rectangular axes
including the principal axes.

25



Sample Problem

y.
\ | B s

L152 X 102 X 12.7

The moments and product of inertia
with respect to the x and y axes are |, =
7.24x106 mm?, I, = 2.61x106 mm*, and

l,y = -2.54x10° mm*,

Using Mohr’s circle, determine (a) the
principal axes about O, (b) the values of
the principal moments about O, and (c)
the values of the moments and product
of inertia about the x” and y’ axes

SOLUTION:

- Plot the points (I, 1,,) and (1, ,-1,).
Construct Mohr’s circle based on the
circle diameter between the points.

 Based on the circle, determine the
orientation of the principal axes and the
principal moments of inertia.

« Based on the circle, evaluate the
moments and product of inertia with
respect to the x’y’ axes.

26



1,4 (10°mm) SOLUTION:
Y(2.61, +2.54) * Plot the points (I, I,,) and (I -1,,). Construct Mohr’s
circle based on the circle diameter between the points.

OC = laye = (I, +1,)=4.925x10° mm?

A
_1 _ 6y
5 ol CD=1(1,~1,)=2315x10°mm
A R =/(CD)? + (DX =3.437x10° mm*
6 vy
Iy =17.24x10"mm - Based on the circle, determine the orientation of the
ly = 2.61x10°mm* principal axes and the principal moments of inertia.
lyy =—2.54 x10°mm* tan 26,, = % =1.097 26,, =47.6° O = 23.8°
b Yy
lnax = OA= 1,0 +R |10y =8.36x10°mm*
s lin =OB =1, —R | i =1.49x10°mm?
O X

27



y-
\ | Bt

L152 X 102 X 12.7

1 6 =120°
3.437 X 106
min4
0 L1,
¥ 20..=47.6°

OC = I 5 = 4.925x10° mm*
R =3.437 x10°mm*

Based on the circle, evaluate the moments and product
of inertia with respect to the x’y’ axes.

The points X" and Y’ corresponding to the x”and y” axes
are obtained by rotating CX and CY counterclockwise
through an angle 8= 2(60°) = 120°. The angle that CX”
forms with the x” axes is ¢ = 120°- 47.6° = 72.4°.

. =OF =0C+CX’'cos¢g=1,,+Rcos72.4°

|, =5.96x10® mm?*

|, =0G=0C-CY'cos¢=1,, —Rcos72.4°

I y = 3.89x10°mm*

l,,, = FX'=CY'sing=Rsin72.4°

ey =3.28x10°mm*

28



Principal Points

 Consider a pair of pri

ncipal axes with origin at a given point O.

« [f there exists a different pair of principal axes through that same point, then every

pair of axes through t
are the same.

’

y

hat point is a set of principal axes and all moments of inertia

y

O

-(—b—b

IX,=IX+IV+IX ch0526?—lX sin 26
2 2 !
L -1, .
v = sin26+ 1, cos 20
X
«(—b—b

« Apoint so located that every axis through the point is a principal axis, and hence

the moments of inerti
principal point.

a are the same for all axes through the point, is called a

* In general, every plane area has two principal points. These points lie equidistant
from the centroid on the principal centroidal axis having the larger principal

moment of inertia.

29



Principal Points

» Apply the concepts described above to axes through the centroid of an area.

« If an area has three or more axes of symmetry, the centroid is a principal point and
every axis through the centroid is a principal axis and has the same moment of
Inertia.

» These conditions are fulfilled for a circle, for all regular polygons (equilateral
triangle, square, regular pentagon, regular hexagon, and so on), and for many other
symmetric shapes.

11"1

» When the two principal centroidal moments of inertia are equal; then the two
principal points merge at the centroid, which becomes the sole principal point.
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