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Governing Equations in linear elasticity

. . . 1
Strain-displacement relations: <, - (v,

+u,,) (6eqns)

o

Strain compatibility: s, ,, + ¢, — ¢, , — €, . = 0 (6 €qns)

Equilibrium:o, + F, =0 (3 eqns)

Isotropic Hooke’s Law:
Jijzﬂ.gkk5ij+263ij; g..:1+vai_—v—akk5ij. (6 ean)

1] E J E
15 equations for 15 unknowns (3 displacements, 6 strains,
6 stresses).
May define the entire system as

f{ui,g__aij;i,G,Fi}: 0
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Traction and Displacement Boundary Conditions

T(n)

Traction Conditions Displacement Conditions Mixed Conditions

(a) (b) (c)



Boundary Conditions on Coordinate Surfaces

 The traction specification can be reduced to a stress
specification.

TX(X) =oc T () _ z'xy.(ay is irrelavent.) T T

T =o T, =71,.(o, isirrelavent.) T =—-o,, I~ =-7

(Cartesian Coordinate Boundaries) (Polar Coordinate Boundaries)



Boundary Conditions on Oblique Surfaces

 On general non-coordinate surfaces traction vector will
not reduce to individual stress components and general
form of traction vector must then be used.
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Example of Boundary Conditions

Example (1)
VA Fixed Condition Traction Condition
u=rv= 0 T)gn) — O.X — S’Ty(n): Txy: 0
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Traction Free Condition
T{"=1,=0,T"=c,=0

(Coordinate Surface Boundaries)



Example of Boundary Conditions

Example (2)

Traction Condition
T = —Ty, =0, Ty(”): -0,=S
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TV = aun, + Tyny, =0
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" =1yne +ayny, =0 Yy

Fixed Condition N

u=rv=0 Traction Free Condition

(Non-Coordinate Surface Boundary)



Line of Symmetry Boundary Conditions

Symmetry Line

-

Line of symmetry boundary condition.

Rigid-Smooth
Boundary Condition

u=0 !

TW=0




Interface Boundary Conditions

Embedded Fiber or Rod

Material (2): o

7))l

I

Layered Composite Plate
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Composite Cylinder or Disk

Interface Conditions:
Perfectly Bonded,
Slip Interface, Etc.
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Problem Classification

» Goal: determine the distribution of displacements, strains
and stresses In the interior of an elastic body under
equilibrium when body forces are given.

T(n)

Traction Problem Displacement Problem

Mixed Problem

f{ui,gijaij;/l,G,Fi}: 0

> Simplification!



Stress Formulation

 Applicable to Traction Problem

« Boundary conditions are given
In terms of the tractions or stress
components

« Aiming to reformulate the field
equations solely in terms of the
stresses by eliminating the
displacements and strains

T(n)
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Stress Formulation

» Using Hooke’s law to rewrite the compatibility in terms
of the stresses

1+ v 1%

£, = o, - —o.5, (Hooke’s Law)
E E
( 1+ v v 1+ v v
’gij Kl e O it — E_O-mm,kl ij? Klij c O wiii ™ 9 mm.i%n
= A
| 1+ v 1% 1+v v
i n = Gik,jl__amm,jléik’ € T O ik __Gmm,iké‘jl
| E E E E
atEas—ew -, =0 (Strain compatibility)
1%
= O ik + Cwiij % 9 ik T L (Gmm,klaij + Gmm,ij5kl a Gmm,jlaik a Jmm,i|<5j|)
+ v

 Recall that, only 6 out of the 81 are meaningful

1 1%
k — I = Gij,kk+ Gkk,ij O-mm,kkgij_'_aik,jk +O-jk,ik
1+ v 1+ v
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Stress Formulation

 Further simplifying the compatibility using equilibrium
eguations

O-lkjk:_l:i,] 1 1%
Gik,k:_Fij% = Gij,kk+ O-kk,ij: o kké‘j_(Fi,j_FFj)
La.k.kz—F.. 1+v 1+v
jk i j.i
_ 1+ v
l= 1= 0, =~ F
1-v
1 v
Gijkk+ O vkij = ~ Fkkgj_(F J+FJ)
1+v 1-v
= _ —
) 1 1%
Ve + (Vo )V =- (V-F)I-(FV+VF)
1+v 1-v

 Beltrami-Michell Compatibility Equations (Compatibility
In terms of stress)
14



Stress Formulation

 Scalar equations

2

1 9 v (oF,  O0F  9F )  0F,
V o + 2(0'X+0'y+az)=— | + + |- 2 :
1+v Ox 1-v | Ox oy oz ) 0 X
: 1 8 v (oF, 0F,  oF \ 0F,
Ve + : o-x+o-y+az):— | + + |- 2—,
1+v 0y 1-v | 0OX oy oz ) oy
: 1 o v (oF 0F, &F )  oF
Ve + c, to, +to,)=- | + + |- 2
l+v 0z 1—v\8x oy 62) 01
: 1 9 (oF  OF )
VTxy+ o +0 +o0 ):—‘ + |
1+v Oxo0y \ 0y ox )
: 18 (0F  &F )
Vz-xz+ (O'X+O'y+0'z)=— + )
1+v 0x0z2 L@z axJ
: 1 8 (0F, &F )
Vz‘yz+ (0X+0y+0'2):—| + |
1+v oOyoz \ oz ay )



Stress Formulation

« Only 3 are independent, i.e.

4

0
; 2<GZ—V(GX+O'y))
oX 0Y
o° ( or, or, or )
= (1+v) — + + K
OX0yoz | 0z 0 X ay )
4
0
- 2(ox—v(ay+az))
oy 012
o° [ ot o7, 07,
=(1+v) — - - K
OXadyoz | 0 X oy oz )
a4
o, ~-v(oc,+o )
—— v, )
o° ( or 57Xy 5Tyz\
=(1+v) | - + + |-
axﬁyazk oy 01 GX)

» For 6 stress components

« 3 equilibrium equations

oo 5TXy or

+ + + F =0
O X oy 01
arxy 80‘y 8ryz

+ + + Fy::O
O X oy 01
or 5Tyz oo

+ + +F =20
O X oy 02
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Stress Formulation

« The derivation of strains and displacements

O — & ==

Hooke’s Law  Strain-displacement relations

1
c.—-—o, 0. gi_:z—(ui’j-l—uj,i)
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Displacement Formulation

« Rewrite the Hooke’s law 1n terms of displacements.

|
£ = u. . +u..);e,, =uU
N ( o J'I) - o L = |0 = AU 0, +6 (ui,l i ui’i)

1
2
le, 5, +2Gs, |

o . =
ij

» Reformulate the equilibrium equations

= Au, S5 +G (u_ __+u___)+ F =0
) 1) 1, J]) )1

Gu_k+(2¢+G)uk + F. =0

i,k JKi i

GV'U+(A+G)V(V-u)+F =0

* Navier’s/Lamé’s Equations
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Displacement Formulation

 Scalar equations
o (ou ov  ow )

GV2u+(;L+G) | + + |+FX=O,

OX | OX oy oz )

o (ou ov  ow )

GVZV+(/I+G) | + + |+Fy=0,

oy | Ox oy oz )

o ( ou oV ow )

GV2W+(1+G) | + + |+FZ=O.

oz | Ox oy oz )

3 equations for 3 displacements
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Displacement Formulation

e The derivation of strains and stresses

O — & <— U

Hooke’s Law  Strain-displacement relations

c =/1Tr(8)| +2Ge

—

! V V
g =—(uVvV +Vu
~(uv +vu)

oco.=4e o +2Ge¢.
ij kk — ij i]

Ev
i: y 1
(L+v)(1-2v) e..=—(u_.+u..)
1] 1, ] ], 1
2
E
G =
2(1+v)
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Summary of Formulations

General Field Equation System
(18 Equations, 15 Unknowns:)

f{ui,gij’aij;ﬂ,G,Fi}: 0

1
T ;(ui’j + uj’i);

oc.=Adeg o6 +2G¢_;
ij kk ~ ij ij

Displacement Formulation
(3 Equations, 3 Unknowns)

Stress Formulation
(6 Equations, 6 Unknowns)

Hoyv. Fi=0 f{u,2,6,F}=0
. F =0
T Gu,, +(A+G)u,  +F =0
1
O-ijkk+ O-kkj
1+v FEM codes!
1 %4
= — Fo Sy~ (F + Fj‘.)
1-v

21



Principle of Superposition

Superposition applies to any problem that is governed
by linear equations.

 Under the assumption of small deformations and linear
elastic constitutive behavior, all elasticity field equations
are linear.
The usual displacement and traction boundary
conditions are also linear.

Principle of Superposition: For a given problem domain, if the state{a (D, el

1; L ) l
solution to the ]‘Lmdamema! elasticity equations with prescribed body forces F{ " and

2 2
surface tractions Tf ) and the state {O'L), e’ff), 2 )}H a solution to the fundamental

equatmm with pws*u:bed body fou_es* F{ \and S‘mfar_e tractions Tf 2 then the sta-
te{o; (” + r{; : L” -+ ef; : {1) + a{‘ Wwill be a solution to the problem with body forces

F(l) —|— F{ ‘and surface trac n()m‘ Tm + T{ %)

u{.)}ma

22



Principle of Superposition

ettty o Ltibet
- —  — -

- - - —

~— @ [~ = 1 o [ @
- — ~— —

- o e -

= g = (o) ey, ut g l
BRI i

» Must have the same geometry and support type.

 Allow us to solve many more problems by using simpler

basic cases whose solutions are already known.
23



Saint-Venant’s Principle

<« @|T
- — Qol‘U

<_

RV
<— N[
<+ N[

Stresses approximately the same

Fa Tin)

7

Boundary loading T™ would produce detailed and
characteristic effects only in the vicinity of S*. Away
from S* the stresses would generally depend more on
the resultant Fy of the tractions rather than on the
exact distribution

24



Saint-Venant’s Principle

Saint-Venant’s Principle: The stress, strain, and displacement fields caused by two

different

statically equivalent force distributions on parts of the body far away from

the loading points are approximately the same.

 Allow us to solve a simpler statically equivalent problem

wit

(ap
pro

n simpler boundary conditions to get a solution
proximate) for the original, more complicated

Dlem.
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Solution Strategies — Direct Method

 Seeking the solution of field equations by direct
Integration.

« Boundary conditions are satisfied exactly.

« Method normally encounters significant mathematical
difficulties thus limiting its application to problems with

simple geometry.
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Solution Strategies — Inverse Method

 Displacements or stresses are selected that satisfy field
eguations.

 Finding/guessing a solution to the governing equations

 Trying to find a problem whose boundary conditions can
be satisfied by the solution

* It Is sometimes difficult to construct solutions to a
specific problem of practical interest.

27



Sample Problem — Pure Bending of a Beam

O Consider the case of an elasticity problem under zero body forces
with the following stress field:

0X=Ay, O'yzazzrxy:rxzzryzzo.
The stress field satisfies the equations of equilibrium and

compatibility, and thus the field is a solution to an elasticity problem.
What problem would be solved by such a field?

[Hint] Consider some trial domains and investigate the nature of the

boundary conditions that would occur using the given stress field.
WY

-t >
/’k TN
1 ; X\
\ /
N, ar

-

Pure bending!
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Solution Strategies — Semi-Inverse Method

» Part of displacement and/or stress field Is specified, while
the other remaining portion Is determined by the
fundamental field equations and the boundary conditions.

« Making an educated guess for part of the solution; then
using the governing equations and/or boundary conditions
to determine the rest of the solution.

» The usefulness of this approach is greatly enhanced by
employing  Saint-Venant’s  principle, whereby a
complicated boundary condition can be replaced by a
simpler statically equivalent distribution.

29



Sample Problem — Free Torsion of a Noncircular Shaft

[0 Based on the torsion problem, We propose the following

displacement field:
Uu=-azy, V=aix, W =W(X,Y).

« By using the strain-displacement relations and Hooke’s law, the
stress field yields

(Ow ) [ ow 3
zeayzazzrxy:O; TXZZGL__ayJ; ryZ:G|—+aX|.
0 X \ Y )
» Substituting these results in equilibrium equations produces
ow ow '’ . .
—+ ——=0. (Navier’s equation)
O X oy

[Note]
By assuming part of the solution field, the remaining equations to be

solved are greatly simplified.
A specific domain in the x-y plane along with appropriate boundary

conditions is needed to complete the solution to a particular problem.
30



Mathematical Technigues

 Analytical Solution Procedures

- Power Series Method

- Fourier Method

- Integral Transform Method
- Complex Variable Method

» Approximate Solution Procedures

- Ritz Method
- Galerkin Method

« Numerical Solution Procedures
- Finite Difference Method (FDM)

- Finite Element Method (FEM)

- Boundary Element Method (BEM)
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