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Assumptions

 Body force density Is given.
* Prescribed boundary tractions and/or displacements

» All displacements are small. This means that we can use
the infinitesimal strain tensor to characterize
deformation; we do not need to distinguish between
stress measures, and we do not need to distinguish
between deformed and undeformed configurations of the
solid when writing equilibrium equations and boundary
conditions.

» The material is isotropic, elastic-perfectly plastic solid.
* Neglect temperature changes.



Introduction

The elastic limit: This is the load required to initiate plastic flow in the solid.

The plastic collapse load: At this load, the displacements in the solid become
Infinite.

Residual stress: If a solid is loaded beyond the elastic limit and then unloaded, a
system of self-equilibrated stress is established in the material.

Shakedown: If an elastic-plastic solid is subjected to cyclic loading and the
maximum load during the cycle exceeds yield, then some plastic deformation
must occur in the material during the first load cycle. However, residual stresses
are introduced in the solid, which may prevent plastic flow during subsequent
cycles of load. This process 1s known as “shakedown,” and the maximum load for
which it can occur is known as the shakedown limit. The shakedown limit is often
substantially higher than the elastic limit, so the concept of shakedown can often
be used to reduce the weight of a design.

Cyclic plasticity: For cyclic loads exceeding the shakedown limit, a region in the
solid will be repeatedly plastically deformed.



Summary of Governing Equations

» Displacement-strain relation: &, =%(ui,j +u;;)

ij
e Strain partition: dg; =de; +dsf
e Incremental stress-stain relation:

3 ! 4
1+ v > 2717 =
E E _p30ij 3 rr
de E—, ~ 005 = Oy
Oy

» Equations of static equilibrium:o; , + F, =0.
» Traction BCs on S;: o;n, =t.
» Displacement BCson S;: u, =0,



Cylindrically Symmetric Elastoplastic Solids

 Cylindrically symmetric geometry
and loading (i.e. internal body
forces, tractions or displacements
BCs, nonuniform temperature
distribution).

» Cylindrical-polar bases: {e, e, e, }
» Cylindrical-polar coordinates: {r, 9, z}

» Position vector: x =re,

» Displacement vector:u=u,[r]e
» Body force vector: F=F [r]e
« Acceleration vector: a=-w’re,




Cylindrically Symmetric Elastoplastic Solids

» Cauchy stress: 6 =0, [rlee, +o,[r]ee,+to,[r]e,e,
» Infinitesimal strain: e=¢, [rle.e +g,[r]ee, +¢,[r]e,e,

.. : du
» Strain-displacement relation: ¢, = drf, g, :Tr
» Stress-strain relation in elastic region (plane strain or
generalized plane straEin):

i) )

& +VE, +VE, |,

E
%=z U5 e e,
o, = £ {ve, +ve, +(1-v)e,}.

o (ev)(i-2v)
 von Mises yield criterion:
1

o, Z\/E{(O'r —09)2+(06—GZ)2+(02 —(Tr)z} =0,




Cylindrically Symmetric Elastoplastic Solids

» Stress-strain relation in plastic region

e Strain partition: de, =ds® +dg”,dg, =ds’ +dgP,de, =dsf +dg’

: : d d
» Elastic strain: dgfzdgr_v( To ¥ ‘7)

E
e Flow rule:
’ =P
dgrp —dzP Ei:dgp Ei{dr _£(0r+09+02)}: de {Jr —E(Ug"'ﬁz)},”','"
2GY 26\( 3 O'Y 2
« Equations of motion: 9949 =% ¢ __ .2

dr r
» Traction BCs: og|a]=0,,0:|b]=0,.

« BCs: u,|a]=u,, u[b]=u,; or o |a]l=0,, olb]=0,

 There is no clean, direct, and general method for integrating these
equations. Instead, solutions must be found using a combination of
physical intuition and some algebraic tricks. 8



Hollow Cylinder under Monotonic Pressure

* \We consider a long hollow cylinder.

 The sphere Is stress free before it Is
loaded.

. No body forces act on the cylinder.

 The cylinder has zero angular velocity.

 The cylinder has uniform temperature.

» The cylinder does not stretch parallel to
Its axis.

* The inner surface r = a Is subjected to monotonically
Increasing pressure p,.

 The outer surface r = b Is traction free.

» Strains are infinitesimal.

 We aim to find....




Hollow Cylinder under Monotonic Pressure

» Elastic solution (1+(;2)paa)r{(1_2V)+b_j};
—-a’

r
p,a’ b p,a’ b 2vp,a’
T —a? {1_F} G‘gzbz—az 1+F O T g7

e von Mises effective stress:

2 4 212
o, = Eaa 2\/3k1 +1+4° -4y, v=05= o, ~ \/2§paazb2
b2—a’\ r (b _a )r

* \We see that the hollow cylinder first reaches yield at r = a
with the elastic limit: p./o, ~(1-a%/b*)/</3
* |f the pressure Is increased beyond yield, we anticipate that

a region a <r < c will deform plastically, whereas a region
c <r <b remains elastic.

10



Hollow Cylinder under Monotonic Pressure

* In the plastic regiona<r<c
» To simplify the calculation, we assume: dgf =0,dg” =0

» This assumption turns out to be exact for v=0.5 but Is
approximate for other values of Poisson’s ratio.

 The plastic flow rule shows that

=P
Ozdgp:dg {GZ—%(Gr+GH)} = o zé(aﬁae)

Z
Oy

 Yield criterion

1

=0, (3o -0 +or-0.) +o-0.)} = Sl -0,

c,>0,0 <0 :>§(c76,—gr)zgY 309—0226\(
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Hollow Cylinder under Monotonic Pressure

* In the plastic regiona<r<c
 Equation of static equilibrium

do o —-o do 2o 20
LT ‘9+fr/:—peozf = — =0 =0, =—=Inr+D
8§ 8§

d dr  f3r J3
* Integrate and apply the BCsatR = a

20,

o, lal=-p, :>c7r:\/§lnr/a—pa
ag—arzz\g, :crgzz%lnr/a—pa+2\7_§Y

e Elastic strain:
do, v(do,+do,)

12



Hollow Cylinder under Monotonic Pressure

* In the plastic regiona<r<c
 The plastic strains satisfy:

- P - P
dgrp:dg {O-r_%(o-e-l_az)}’dg;:dg {00_%(Uz+o-r)}

Oy Oy
=P =P

:>dgrp+dg§:dg {Gr+09—1(6r+69+202)}=d8 {1(0r+69)—02}=0.
oy 2 o, (2

 The elastic strains thus satisfy (plane strain condition):
de +de, =de® +de’ = (do, Ed%) _v(do, +d;‘€ +2do,) _ (l+v)|(£l—2v) (do. +do,)

» Since the pressure is monotonically increasing, the

Incremental stress-strain relation can be integrated
(1+V)(1—2v) 1+v)(1—2v) 4o, 20,
= = (\/§ Inr/a—2pa+ﬁJ

(1+v)(1-2v)r( 20, C
= (\/glnr/a—paj+?

(do, +do,) = (

= U, =

13



Hollow Cylinder under Monotonic Pressure

* In the elastic regionc<r<b

p.C° b’ p.C° b? 2vp.c?  (1+v)pcir b’
- {1——},0'9: > (:HF ,Gzzbz_cz,ur: E(bZ—CZ) (1 2v)+r—

b* —c?
* Form the radial stress in the plastic region, we obtain the
pressure at the elastic-plastic boundary r = ¢

20.
c— YInca — = p =p.——=2Inc/a
o, |c] /a—p, =—p, P. = P, A /

* The elastic- plastic boundary is located by noting that the
stress In the elastic region must just reach yield atr =c¢

2 p.c° 2b’ 2 2 2
R = s LS

J3 —c? c? (1—c2/b2) (1-c?/b? J3
p, 2Inc/a (1—C2/b2) 20y Oy (1—Cz/b2)
o "7 + N P. =P, N Inc/a= N

14



Hollow Cylinder under Monotonic Pressure

 The constant of integration can be found by noting that the
radial displacements in the elastic and plastic regimens
must be equal atr=c¢

(1+v)(é—2v)r(2j§Y Int/a_ paj+9

"
. . (1+v) p.c’r b?
* In the elastic region: u, = (') (1- 2v)+r—
 Enforcing the displacement continuity condition
) 2(1-v?)b%c? ) 2(1-v?)b%c? 26,
“TEp-) T Ep o) (pa‘ N '”C/aj
- 2(1—1/2)b202 o (l—CZ/bZ) 20, (1—1/2)C2

E(b*—c?) J3 - J3E

* In the plastic region: u, =

15



Hollow Cylinder under Monotonic Pressure

* In the plastic region 1k
= \\-
a<r<c _ %><______
2. / -
o, = Inr/a-p,, /
\/§ ' 0 -
ZO-Y 2(7 © [ PP : - ="
o, = Inr/a—p, +—= ¢ 1 _=A7 =2
0 \/é / \/§ E _ : 4 = L c/ad D
] ] : p “ c/a=:
- In the elastic region ~ -1p 2~
c/a=1.5
c<r<b : - — =0,
e  bja=3
Gr_\/gbZ{l I’Z}’ _2./...|....|....|....
2l e 1 1.5 2 2.5 3
o, C
60 = J%bz [14‘ r—zj r/a
b, _2hcia (16) o o (1eb)
K 3 T B V3

16



Hollow Cylinder under Monotonic Pressure

» In the plastic region °
a<r<c

1+v)(1-2v)r( 20, &
u, =( )(E ) [\% Inr/a— paj E
5 2\ 2 =
) GY(l 1% )C =
\/§Er %
* In the elastic region E

c<r<b

(+v)ocir | b?
Ur = \/§Eb2 (1 2V)+F
p, _2Inc/a (1-c?/b?)

Oy \/§ \/§

N

o]
] | | ] |

c/a=2.5

v=0.3, b/a=3

c/a=2

c/a=1.5

17




Spherically Symmetric Elastoplastic Solids

 Spherically symmetric geometry
and loading (i.e., internal body
forces, tractions or displacements
BCs, nonuniform temperature
distribution). «

+ Spherical-polar bases:{e;.e,.€, |
» Spherical-polar coordinates:{R, ¢, 0}

» Position vector: X = Re,
» Displacement vector: u = u, [R]e,

» Body force vector: F = F, [R]e,
 Cauchy stress tensor:

o =0y |R]|ese; +0,[R]ee, +0,[R]ee,, o,=0, y



Spherically Symmetric Elastoplastic Solids

e Infinitesimal strain tensor

e=cz|Rleqes +¢,[R]ee, +¢,[Rlee,, ¢, =3¢,
. : du u
» Strain-displacement relation: s, =d—F§, £,=¢, :ER
» Stress-strain relation in elastic region:
Or| E 1-v 2v||é&g
o, - (1+v)(1—2v) 14 1]\¢e, '
 von Mises yield criterion:
, 1 2
1 1 ozt ZGR—5(0R+26¢)=§(O'R—G¢)
O'i; =0 —gakké}j =0 —g(GR +20'(p)5ij — ) .
o =0 ——(O'R+26 )Z——(GR—O' )
| ® 4 3 @ 3 @
3 ! !
o, =.,—0 O =|GR—G¢|:GY.

€ 2 ij ij
19



Spherically Symmetric Elastoplastic Solids

» Stress-strain relation in plastic region

e Strain partition:de; =de; +def, de, =de’ +de), de, =dgj +def
o Elastic strain: de; = Zdoy —=do,, det =d&f :?da —EdGR
 Flow rule:

de®(og - deP oy —o
dgp:dg 30 :>ng: (O-R (P)’ dgg_dg ( R gp)
ZJY Oy ZGY
 Equilibrium equations: do, Z(GR o, )+ Fy =0.

dR R
* Traction BCs: GR[a]=0a,GR[ ]

- Displacement BCs: u [a]=u,,u; [b] =U,.

 There is no clean, direct, and general method for integrating these
equations. Instead, solutions must be found using a combination of
physical intuition and some algebraic tricks. 20



Hollow Sphere under Monotonically Increasing Pressure

 \We consider a pressurized
spherical thick-walled sphere.

 The sphere Is stress free before it
IS loaded.

* No body forces act on the sphere.

 The sphere has uniform
temperature.

* The inner surface R = a is subjected to monotonically
pressure p..

* The outer surface R = b Is traction free.

e Strains are infinitesimal.

e We aim to find....

21



Hollow Sphere under Monotonically Increasing Pressure

 Elastic solution
a3 pa b3 a3 pa b3

 von Mises yield criterion:

a’p, 3b’

b°—a’ 2R’

 \We see that a pressurized elastic sphere first reaches yield
at R = a, with the elastic limit: p. =20, (1-a%/b*)/3.

* |f the pressure Is increased beyond yield, we anticipate that

a region a < R < ¢ will deform plastically, whereas a region
c <R < b remains elastic.

Oy =‘GR —G¢‘=G¢—GR =

22



Hollow Sphere under Monotonically Increasing Pressure

* In the plastic regiona<R <¢c
 von Mises yield criterion

_‘ B ‘ B B B 3.3 P, 3b3
GY o O-R Ggo o O-(p GR R b3 _a3 2R3
 Equation of static equilibrium
do, 2 do, 2o
dRR+R(GR—G¢)+FR:O, c,—0r=0, = dRR_ RY =0

* Integrate and apply the BCsatR = a

o, =20,InR/a-p, =o0,=20,InR/a-p,+o

23



Hollow Sphere under Monotonically Increasing Pressure

* In the plastic regiona<R <¢c
- e L 2 ¢ _det =1 Vg Y
Elastic strain: ds; = —do, -—do,, dsj=ds; =—do, - —do;
» The plastic strains satisfy: de} +2de) =0
* The elastic strains thus satisfy o
deg +2de, = ded +2dst = —

(dog +2do,))

» Since the pressure is monotonically increasing, the
Incremental stress-strain relation can be integrated

. . 1-2v du, 2u 1 d
= &g +2¢, = (0R+20¢) = dF\T + RR =23 dR(RzuR)
1-2v

1-2v

(6oy INR/a-3p, +20,) =uz=- R(p, 20, InR/a)+%

 The constant of integration, C, will be determined later.
24



Hollow Sphere under Monotonically Increasing Pressure

* In the elastic regionc <R <D

c’p, [ b° c’p, [ b° 1+v b® 1-2v
R T T (RS _1]’ C0 %0 T [ZRS +1)’ e = E((b323) R(ZR?’ Ty JCSpC
* Form the radial stress in the plastic region, we obtain the
pressure at the elastic-plastic boundary R = ¢

oq|c|=20,Inc/a—p,=-p, = p.=p,—20,Inc/a
» The elastic-plastic boundary is located by noting that the
stress In the elastic region must just reach yield at R = c.

3p.b®  3(p,—20, Inc/a)b’
2(b*-c®) | 2(b° —c?)

Oy =0,—0g =

= &:ZInc/a+%(1—c3/b3), P. =P, —20, Inc/a= ZC;Y (1—03/'33)

Oy

25



Hollow Sphere under Monotonically Increasing Pressure

 The constant of integration can be found by noting that the
radial displacements in the elastic and plastic regimens

must be equal at R =c.

1-2v R(p,—20, In R/a)+£

R2

* In the plastic region: u; =—

; ; 1 3 _
* In the elastic region: u, = (1+v) R b3+1 2 c’p,
E(b3_c3) 2R®  1+v

 Enforcing the displacement continuity condition
3(1-v)c’b®  3(1-v)ch’
Pe = 2E (b*~c°)

(1—03/b3):

- 2E(b3—c3)
B 3(1—V)C3b3 ZGY
- 2E(b3—c3) 3

(p,—20, Inc/a)

o, (1-v)c’
= .

26



Hollow Sphere under Monotonically Increasing Pressure

* In the plastic region 1 —
a<R<c 0.5 T
GRZZGY In R/a_pa1 0 _ _____—-;-:--'
o,=20,InR/a-p,+0, - - -2~
S -0.5 _ e
» In the elastic region £ - /a2
C<R<b -
20 C3 b3 i — _{51'1'
Or =— Sgs (RB —1j, -2 Ogo
_25 s 1 g s s J 3 3 3 9 1 3 3 3 3
O :20YC3 b3 +1 . 2 2.5 3
7 3p® | 2R® R/a

Pa _ 2 _ 20 3 /I3
—_2Inc/a+§(1—c3/b3), p. = p,—20, Inc/a= 3Y (1-c/0%)

Oy



Hollow Sphere under Monotonically Increasing Pressure

* In the plastic region 10
a<R<c :
8
1-2v S -
Up === R(p,—20, InR/a) «E
> 6
+O'Y (1—V)C3 E "
ER? 5
* In the elastic region E
C<R<b 2
U_ZGY(1+V)C3 b3+1—2v ol s T
T 3ER 2R 1+v : = ; 2 °

R/
&zzlnc/a+§(1—c3/b3), p, = p,—20, Inc/a= 2? (1-c/0%)

Oy

28



Hollow Sphere under Monotonically Increasing Pressure

* In the plastic region 151
a<R<c

1-2v =

Uy === R(p,—20y InR/a) % ol

O (1-v)c’ ;j -
ER? 2

* At the interior 2 [
surface R =a =

1—2v oy (1-v)c | N T
g [ﬂ] — E ap, + Eﬂz 0 1 1.5 2 2.5

Pressure p/Y
&zzlnc/a+§(1—c3/b3), p, = p,—20, Inc/a= 2? (1-c/0%)

Oy

29



Hollow Sphere under Cyclic Internal Pressure

 The sphere is stress free before it
IS loaded.

* No body forces act on the sphere.

 The sphere has uniform
temperature distribution

e The outer surface R=Db Is
traction free.

 The inner surface of the sphere R = a Is repeatedly
subjected to pressure p, and then unloaded to zero
pressure.

» The nature of the solution depends on the magnitude
of the internal pressure.

30



Hollow Sphere under Cyclic Internal Pressure

o If p, <20, (1-a°/b*)/3
* the maximum value of p, applied to the sphere does not

exceed the elastic limit, the solid remains elastic
throughout the loading cycle.

 The sphere is stress free after unloading and remains
elastic throughout all subsequent load cycles.

* From the previous case study for monotonically
Increasing load, in the plastic regiona<R <c¢
o, =20, InR/a-p,, o,=20,InR/a—p,+0,
* From the limiting case of a completely yielded shell (c

= Db), the collapse load can be determined
oz |b]=0=20, Inb/a-p,, = p,=20,Inb/a

31



Hollow Sphere under Cyclic Internal Pressure

» Practical pressure range: 2o, (1-a°/b®)/3< p, <20, Inb/a

* For pressures In this range, the region between R = a and
R = ¢ deforms plastically during the first application of
pressure, whereas the region between ¢ < R < b remains
elastic.

P o) c/a+§(1—03/b3), p.=p,—20, Inc/a= 2? (1—03/b3)

Oy

* |n this case, the solid Is permanently deformed. After
unloading, its internal and external radii are slightly
Increased, and the sphere Is In a state of residual stress.

 The applied pressure p, cannot exceed the collapse load.

32



Hollow Sphere under Cyclic Internal Pressure

» Practical pressure range: 2o, (1-a°/b®)/3< p, <20, Inb/a
At the maximum pressure of the first cycle
* In the plastic regiona<R < ¢
or =20, InR/a-p,, o,=20,InR/a-p,+o,
* In the elasticregionc <R <D

20,¢° ( b’ 20.,¢°( b?
O =T gy (R?’ _1j’ %= 3 (2R3+1]

o |f the residual stress Is less than or just reaches the
yield stress at R = a when the pressure is reduced to
zero after the first unloading, i.e. fora<R <c

aSpa b3 a3pa b3
o, =20, InR/a-p, - o3 (1—R3j, o, =20, InR/a-p, +oy T | 2R +1
33



Hollow Sphere under Cyclic Internal Pressure

 After unloading of the first cycle (at zero pressure)

a’p, 3b° 3 p,
—~0r =0, = b — 33 2R® ~ Oy :>UR[a]_0¢[a]:§(1_a3/b3)_av

p, >20, (1-2°/b*) 3 =o,[a]-o,[a]>0

GR[a]_a¢[a]:g(1—§§/b3)_GYSGY =|p, 4o, (l—ag/b3)/3

 The maximum load 1s known as the shakedown limit.

* In this case (after unloading of the first cycle), stresses
In the elastic regionc <R < Db are

20,¢° (b’ a’p, b® 20,¢°( b° a’p, [ b°
% = gy (R?’_l]_wa?’[l_wj’ % = g (2R3+1)_b3a3 T

34




Hollow Sphere under Cyclic Internal Pressure

o If 20, (1-a°/b*) [3< p, <40, (1-a°/b°)/3
» the cylinder deforms plastically during the first application

of pressure. It then deforms elastically (no yield) while the
pressure Is removed.

 During subsequent pressure cycles between zero and the
maximum pressure, the cylinder deforms elastically.

» Residual stresses introduced during the first loading cycle
are protective and prevent additional plasticity. This
behavior is known as shakedown.

35



Hollow Sphere under Cyclic Internal Pressure

o If 40, (1-a°/b*) /3< p, <20, Inb/a
« At the maximum pressure of the first cycle

* In the plastic regiona<R <c¢C

op =20y InR/a-p,, o,=20,InR/a-p, +o

* In the elastic regionc <R <D

20,¢° ( b’ 20,¢°( b’
_ — —1 , O = Y +1
RT3 LR?’ ) * 30 (ZRS

36



Hollow Sphere under Cyclic Internal Pressure

 Consider residual stress that is larger than the yield
stress for a < R < d (< ¢) when the pressure Is reduced
to zero after the first unloading.

 Therefore, this iIs a plastic zone as the pressure is reduced
to zero. During subsequent cycles of loading, this region is
repeatedly plastically deformed, stretching in the hoop
direction during increasing pressure and compressing as
the pressure is reduced to zero.

 Anticipate the yield condition

or >0,0,<0 =oy-0,=0,.

37



Hollow Sphere under Cyclic Internal Pressure

 Equilibrium condition
do, 2
dRr

ozla]=0 =|oy =—20,InR/a

+E(GR_G‘”):O = =

—

dop, _ 20,

dR R

o, =0, -0y =—20, InR/a-o,

* In the shakedown regiond <R <c

* This region deforms plastically during the first cycle of
pressure but remains elastic for all subsequent cycles.

* This 1s a “shakedown region.”
 The change in stress during unloading can be calculated

by regarding the region d < R < b as a spherical shell,

subjected to radial pressure at R = d.
» At the maximum load: py =—ox[d]=p,-20, Ind/a.

38



Hollow Sphere under Cyclic Internal Pressure

o After unloading: p, =—og[d]=20, Ind/a.
 The change In pressure: Ap, = p, — p, =4c, Ind/a—p..

 \We can simply add the elastic stress induced by this
pressure change to the stress at maximum load.

o, =20, InR/a—p, + d:Apd3 El—b:;j, o ,=20,InR/a-p,+o, + d"Ap, ( o +1j
b*-d’(" R ’ b —d®| 2R®

» The boundary of the cyclic plastic zone is determined by

the condition that the stress in the shakedown regime must

just reach yield at R = d when the pressure reaches zero.
3Ap, s
2(1-d°/p*)

=|p, =40y (1-d°/b°) /3+ 40, Ind/a

o, =0y [d]-o,[d]=- =|Ap, =40, (1-d*/b*) /3| = 40, Ind/a-p,

39



Hollow Sphere under Cyclic Internal Pressure

» With Ap,, the stress in the shakedown region (d <R <c¢)
can further be simplified

3 3 3 3
o, =20, InR/a—pa—A'GYd 1—23], o, =20y InR/a—pa+aY—4§E);j (ZbR?’Hj

* In the elastic regionc <R <D

» This region experiences elastic cycles of strain. The
solution in this region is derived in the same way as the
solution for the shakedown region, except that the stress at
the maximum load is given by solutions for c < R <b.

40



Hollow Sphere under Cyclic Internal Pressure

 The change in stress during unloading can be calculated
by regarding the region ¢ < R < b as a spherical shell,
subjected to radial pressure at R = c.

. , 20,¢° ( b’
+ At the maximum load: p, =0y [c]= 2 ( : —1j

3b° | c
- 4 3 3
o After unloading: p, =-o;[c]=-20, Inc/a+p, + o (1—b—3j

3b° C
* The change in pressureat R =c¢

, 4c,d° b’} 20,C° b’ 4o,d° b’
Ap,=Pp,—Pp.=p,—20,Inc/a+ 3;33 [1——3j+ ! (1——3j: Y (1——3j

C 3b° C 3b° C

3 3
Pa s C/a+g(l—c3/b3) = p, —20, Inc/a+ ZGYE (1b3] =0
o, 3 b C

41



Hollow Sphere under Cyclic Internal Pressure

 \We then add the elastic stress induced by this pressure
change to the stress at the maximum load (c < R < b).

20,¢°( b° C’Ap, b’ 20,¢°( b’ c’Ap, [ b°
% = gy [R3_1j+b3c3(1mj’ % = 32 (2R3+1j+b3c3 T

» With Ap,, the stress in the elastic region (¢ < R <b) can

further be simplified ap =A@ D) CAp Aoy’
©p b°—c* 3p°

3
20,¢° ( b° 4o,d° b’ 20,¢°( b’ 4o,d° [ b°
=— —1|-——1-— |, =— +1|—— +1
UR T Ty (R"’ ) 3° [ RT) 70T T3 | 2R 3° | 2R

C
* |In the preceding discussion, we have assumed that the cylinder is
thick enough to support an arbitrarily large pressure, without
exceeding the collapse load

* For thinner-walled spheres, some regimens will be inaccessible.
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Hollow Sphere under Cyclic Internal Pressure

e The solution for c/a =
1.25 1s below the

shakedown limit. ok

 The residual stresses
are predominantly
compressive.

* Bolt holes, pressure
vessels, and gun barrels -1
are often purposely
pressurized above the
elastic limit so as to
prevent crack
propagation.

Stress /Y
|
(]
(|

- b/a=3  Shakedown

- ﬂfﬂf.%\

c/a=2.5
c/a=2
Cyclic plasticity

r/a

Residual stress distributions after
unloading, for various positions of

the elastic/plastic boundary c/a.
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