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Introduction

» Three-dimensional elasticity problems are very difficult to solve.
Thus we will first solve a number of two-dimensional problems,
and will explore three different theories:

- Plane Strain
- Plane Stress
- Anti-Plane Strain

« Since all real elastic structures are three-dimensional, theories set
forth here will be approximate models. The nature and accuracy
of the approximation will depend on problem and loading
geometry.

* The basic theories of plane strain and plane stress represent the
fundamental plane problem in elasticity. While these two theories
apply to significantly different types of two-dimensional bodies,

their formulations yield very similar field equations.
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Plane Strain

 Consider an infinitely long cylindrical (prismatic) body as shown.
If the body forces and tractions on lateral boundaries are
Independent of the z-coordinate and have no z-component, then
the deformation field can be taken in the reduced form




Plane Strain Field Equations
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Plane Strain Field Equations

 Equilibrium Equations
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Plane Strain Field Equations

* Navier’s Equations
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Plane Strain Field Equations

e Strain Compatibility ¢, ., + €., — €0y — €, 0 = 0 (6 €0NS)
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Examples of Plane Strain Problems

Long cylinders Semi-infinite regions under
under uniform loading uniform loadings



Anti-Plane Strain

 An additional plane strain theory of elasticity called Anti-
Plane Strain involves a formulation based on the

existence of only out-of-plane deformation starting with
an assumed displacement field:u =v =0, w = w(x, y).

Strains Stresses
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Plane Stress

« Consider the domain bounded two stress-free
planes z=xh, where h is small in comparison
with other dimensions in the problem.

« Since the region Is thin in the z-direction,
there can be little variation In the stress
components o,, 7,,, 7,, through the thickness,
and thus they will be approximately zero
throughout the entire domain.

* Finally since the region iIs thin In the z-
direction it can be argued that the other non-
zero stresses will have little variation with z.

« Under these assumptions, the stress field can
be simplified as
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Plane Stress Field Equations
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Plane Stress Field Equations

 Equilibrium Equations
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Plane Stress Field Equations

* Navier’s Equations
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Plane Stress Field Equations
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Examples of Plane Stress Problems

@
—

Thin plate with
central hole

Circular plate under
edge loadings
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Plane Elasticity Boundary Value Problem

 Displacement Boundary Conditions

u=u_(x,y),v=v(x,y)onsS,

 Stress/Traction Boundary Conditions

" (b) () (b) y
(TX =T (x,y)=o0, nx+rxyny\ S=5+S,
on s,
n (b) (b) (b)
T =T (Xx,y)=7_.'n_+ 0o 'n
y y Xy X

 Plane Strain Problem:  Plane Stress Problem:
Determine in-plane Determine in-plane
displacements, strains and displacements, strains and
stresses {U, V, &, &, , &xy s Oy stresses {U, V, &, &, , &y,
Gy, TyJ IN R. Out-of-plane Gy, Oy, Ty IN R. Out-of-
stress G, can be determined plane strain ¢, can be
from in-plane stresses. determined from in-plane

strains. 17



Correspondence Between Plane Formulations

« Plane strain and plane stress field equations had identical
equilibrium equations and boundary conditions.

« Navier’s equations and compatibility relations were similar but
not identical with differences occurring only in particular
coefficients involving just elastic constants.

« So perhaps a simple change in elastic moduli would bring one set
of relations into an exact match with the corresponding result
from the other plane theory.
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Correspondence Between Plane Formulations

Plane Strain Plane Stress
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« Thus, we only need to derive one set of equations: either plane
strain or plane stress equations in 2D elasticity. 19




Combined Plane Formulations

e Define Kolosov’s constant x that Is related to v
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Combined Plane Formulations

 Beltrami-Michell Equation:
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Airy Stress Function Method

« Numerous solutions to plane strain and plane stress
problems can be determined using an Airy Stress
Function technique.

 The method will reduce the general formulation to a
single governing equation in terms of a single unknown.

 The resulting equation Is then solvable by several
methods of applied mathematics, and thus many
analytical solutions to problems of interest can be found.
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Conservative Body Forces

o If a force field is capable of being represented as the
gradient of a scalar function, it is referred to as

conservative: y Y oV
F =-— F =-—, F =-—

y

0 X oy Z 01
 Consider the work done when moving one particle in a

gravitational field. The conservation of energy demands

(oV oV ov )
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e Thecurl: vxF =& F e =-¢,

1

) e = 0
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e Conservative force fields are irrotational. The above

relation serves as the constraint condition. )



Particular Cases of Conservative Body Forces

 Gravitational Loading

X y

» Inertial forces due to a constant angular velocity w

a =0 r = a, =w X, a =o Yy
2 2
F =pa =po X Fyzpayzpa) y
1 2 2 2 2 2
=V = -—pw (X +y) = VYV =-2pw

2

» Inertial forces due to rigid-body accelerations are
conservative If and only if angular velocity Is constant.
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Airy Stress Function Method

 Equilibrium equations for plane problems

ao-x arxy Gfxy 80‘y

+ +F =0, + + F =0.
O X oy O X oy

* In the case of a body force derivable from a potential
function, 1.e. a conservative body force

oV oV
F =——, F = - —

y

O X oy

» Solution to the homogeneous equations

o(c,-V) or, or. 0o
+ =0, + = 0.
O X oy O X oy
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Airy Stress Function Method

By the theory of differential equations

[0 (o,-V) o, (x,y) oA (X, V) oA (X,Y)
| = = o -V = T T, T
| 0 X oy ! dy o X
! 7 ( ) 0B ( )
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0 X oy oy O X
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« where = y(X,y) Is an arbitrary form called 4iry s Stress
Function. This stress form automatically satisfies the
equilibrium equation.
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Airy Stress Function Method

 Beltrami-Michell Equation
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Plane strain: x = 3 - 4v, Plane stress: x =
1+v
» For harmonic body force potentials, I.e. gravity
o'y o'y o'y 4
Lt 2 —, =V v = 0.
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 This relation is called the biharmonic equation and its solutions
are known as biharmonic functions.

» The governing Airy stress function equation is identical for plane
strain and plane stress, and Is independent of elastic constants.

* |f only traction BCs are specified for a simply connected region,

the stress field for both cases is also identical. .



Airy Stress Function Formulation

» The plane problem of elasticity can be reduced to a single
equation in terms of the Airy stress function.

* Traction boundary conditions would Involve the
specification of second derivatives of the stress function;

however, this condition can be reduced to specification of
first order derivatives.

(n) oy oy
TX =on +z N = n_ - n, .
oy OXOYy
2 2
(n) oy oy
Ty =t N, +to n =- n_+ L
oXoy 0 X

* The plane problem is then formulated in terms of an Airy

function with a single governing biharmonic equation.
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Polar Coordinate Formulation

« Strain-Displacement relationship
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For plane strain: x = 3 - 4v;

For plane stress: xk =

3-v

1+v
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Polar Coordinate Formulation

 Equilibrium equations
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Airy Stress Function in Polar Coordinates
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Airy Stress Function in Polar Coordinates
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Airy Stress Function in Polar Coordinates

 Beltrami-Michell equation

4 2(1_K) 2
V vy = vV =
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- Traction boundary conditions 4
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6 (1Loy ) 8’y ) .

T Tarlre )T e
* The plane problem is then formulated in terms of an Airy

function with a single governing biharmonic equation.
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