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The Elastic Curve, Deflection and Slope

* The elastic curve: beam axis under bending, required to
determine beam deflection and slope.

« Bending deflections (w = f(x)): vertical deflection of the neutral
surface, defined as downward positive / upward negative.

 Slope (8 = 6(x) = tan(#) = dw/dx): rotation of cross-sections,
defined as clockwise positive / counter clockwise negative

g w

Deflection curve




Differential Equation of the Elastic Curve

e Curvature of the neutral surface

1 M(x) Lo LW
p(x)  El, p(x)  (@L+w?)¥2
M >0 M <O
M W” < O M M W” > O M
Wy WY
Elw' =—-—M E1: flexural rigidity

 The negative sign Is due to the particular choice of the w-axis.
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Deflection and Slope by Integration

Elw' =-M(X)
Elw :—_[I\/I (x)dx+C
EIWz—HM(X)dXdX+CX+ D

« Conventionally assuming constant flexural rigidity (EI)

» Integration constants C and D can be determined from boundary
conditions, symmetry conditions, and continuity conditions.



Boundary Conditions — Simple Beams

» Deflections are restrained at the hinged/rolled supports

=>w,=0;, w;=0



Boundary Conditions- Cantilever Beams

e Both the deflection and rotation are restrained at the
clamped end

—w, =0; 6,=0



Symmetry Conditions

P
» Both the geometry and l i
loads are symmetric about £l l ul l l%
the mid-section (x = L/2) ¢
L
— 0. =0 A" ;

q wl.?

CITTTTITT ] & e My = 55
e AT

21

A A
4 4 4 4 < L




Continuity Conditions

T T |
R B
T H3:

0<x <a, as<x,<L, 0<x,<L-a
w(x =a)=w(x =a); 0(x=a)=0(x =a)
w(x, =a)=w(x,=L-a); 6(x =a)=-0(x,=L-a)
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Direct Integration from Distributed Loads

 For a beam subjected to distributed loads

A dM d*M  dF;

"_ _IL'“—-T.____——————, —:F y —
L4 _____________________x-m___%_______m______x . dX S ( X) dXZ dX q ( X)

o o Equation for beam displacement

A= Yl B = VI

6, = 0] My = 0] becomes d*w  d2M

Bl ==+ =—CI(X)
dx dx

* Integrating four times yields

El w(x)= —j dx j dxj dx _[ q(x)ax
Aget Tty 1Lt X +1Cx*+1C,x* +C,x+C,

 Constants are determined from

[44=0] [yp= 0] conditions on the shear forces and
(M =0] (M= 0] bending moments as well as conditions
on the slopes and deflections.
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Direct Integration from Transverse Loads

» For a beam subjected to transverse loads
(without distributed loads)

 Equation for beam displacement
becomes 43w dM

o o)

El

* Integrating three times yields

El w(x)= —_[ dx j dx _[ Fs(x)dx

+1C,x* +C,x+C,
 Constants are determined from
conditions on the bending moments as
well as conditions on the slopes and
deflections. 1




Deformations in a Transverse Cross Section

|||r O

Neutral / P

surface
1 -Ir

. _—
Neutral axis of
transverse section

T )= ()

« Deformation due to bending moment is
quantified by the curvature of the neutral surface

1 _&(Y) oY)
p Y Ey _
« Although cross sectional planes remain planar
when subjected to bending moments, in-plane

deformations are nonzero,
2 ay)=e ()=

 For a rectangular cross-section, no change in the
vertical dimension will be observed.

 Horizontal expansion above the neutral surface
and contraction below it cause an in-plane

curvature
1« clasti
() _v _ anticlastic curvature

Py P
13




Curvature Shortening

+ When a beam is bent, the ends of | A i l, B
the beam move closer together. 5

e It IS common practice to disregard |
these longitudinal displacements. L .

ds—dx = (x/1+ W' —1) dx = %W’de
A=Lyy— Ly = "= wdx
« For immovable supports, a . | p 1-
horizontal reaction will T M’T o
develop at each end.
A=HL/EA = H=AEA/L

 This equation gives a close estimate of the tensile stress produced by

the immovable supports of a simple beam.
14



Sample Problem

 Given: flexural rigidity (El) of a simply supported beam under a
uniformly distributed load of density g

 Find: equations of deflections and slopes, and their maximum values

(Qmax’ Wmax)

15



 Solution: q

2 g 2,

EIW”_—q—Ix+ﬂx2 X

2" 2 ~ | -

W

EIW’_—q—Ix2+ﬂx3+C '

4 6
EIW:—q—Ix3+ix4+Cx+D

12 24

« Boundary conditions: W(X = O) =0, W(X = |) =0

3
:Czl, D=0
24

16



 Equations of beam deflection and slope q

D = L(,s bt %HHHHHHH%?

24E1 © T A T ~e o _=-"7
—~ I
24EI >'

* The maximum deflection and slope

17



Sample Problem

 Given: flexural rigidity (EI) of a cantilever beam under a
concentrated load acting at its free end

 Find: equations of deflections and slopes, and their maximum values

(Qmax’ Wmax)

>
vy,
>

NS
A
P
-5

18



e Solution:

M(x) =—P(l —x)

AN\
>
iR
P
=y

Elw" =—Px+ Pl N i B x
EIW’:—gx2+PIx+C 'w o
E|W=—%X3+%IX2 +Cx+D

» Boundary conditions: W(X = O) =0, W'(X = O) =0

—C=D=0

19



 Equations of beam deflection and slope

P
X

6= —% (21 —x) p i —l

2El 2‘A ——— - I

Px* g [N
w=—(3-X X

GEI (3=x) w
* The maximum deflection and slope

2
emax — QB — i
2El
PI°

Wmax :WB —

- 3El

20



Sample Problem

 Given: a simply supported beam with flexural rigidity EI is subjected
to a concentrated load P as shown

» Find: the equations of deflection and slope, and their maximum
values (w

max? Qmax)

21



« Solution
* Because of symmetry, it’s sufficient to solve only portion AC.

M(x):gx, (O£x<|§]

P
Elw' = -2 x X—= l

N - ——
E|W'=—EX2-|—C Q; - L= ;5?

4 Tw
| |
Ele—%X3+CX+D 5 ‘ 5 '\
« Left boundary condition: W(X = O) =0 =D=0
2
« Symmetry condition: W'(X — lj =0 =C= i
2 16

22



 Equations of bending deflection and slope:

o= (17 —4x°%)
16El
P X
W = 317 —4x° P
48E1 " ) X—=] l i
« Maximum deflection Q; ______ C.-=--"" g X
and slope: 1w | |
P|2 ——— —>'<— — —»l
0. =0,=—0; = 2 2
16El
PI°
W =Wl | =

™= 48El

2
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Sample Problem

 Given: a simply supported beam with flexural rigidity EI is subjected
to a uniformly distributed load with density g, on its central portion
as shown

» Find: the equations of deflection and slope, and their maximum

values (W .. Gmay)-

(
B
QS C D E gx
e

24



« Solution

« Thanks to symmetry, it is sufficient to consider only the left half
M, (X)) = gax, (0<x <a)

M, (X,) = gax, —%(x2 ~a)’  (a<x, <2a)

E|W1" = —Qax,

Elw, =-—gax, + % (x, —a)°

A oo s
. C D E X
ga— 1 ﬁza

Xg——=

Wy«—a{—a—l—a—\—a.l )




-
E|W1’ = _q_2a X’ +C,

!

Elw1’ =—Qax, = -

Elw, = _q_6a x> +C,x + D,
Elw, =—gax, + % (x, —a)*

Elw, = & X, +ﬂ(x2 —-a)’+C,
= g 6
Elw, = _ X, +i(x2 —-a)* +C,x, + D,

\ 6 24 11
- Due to symmetry: w, (x,=2a)=0 =C, = - ga’

» Constraint condition: w; (x, =0)=0 =D, =0
 Continuity conditions:
w (x,=a)=w, (x,=a) =C,=C,, D, =D,

26



. Equations of deflection and slope:

0, = 11a® —3x, 0<x <a
1 6E| ( ) 1
0, = —[ —3ax,” +(x, —a)* +11a°] a<x,<?2a
6EI
W, = 11a°x, — X, 0<x, <a
1 6E| ( ) 1
g
W, = —_[-4ax,” +(x, —a)* +44a%x,] a<x,<?2a
« Maximum deflection and slope:
11ga’ 19ga*
max A 1]|x%=0 6E| max 2 | X,=2a 8E|

27



Deflection and Slope by Superposition

 Superposition of Loads:

« Deformation of beams subjected to combinations of loads may be
obtained as the linear combination of the deformations due to
individual loads.

Beam material obeys linearly elastic Hooke’s law.

No interactions exist among deformations induced by
Individual loads.

Procedure is facilitated by tables of solutions for common
types of loadings and supports.

28



Sample Problem

 Using method of superposition to find the deflection at section C
and the slopes at sections A and B.

29



« Solution:
 Superpose the deformations due to the uniformly distributed load (q),
the concentrated load (P) and the concentrated moment (m).

m P q = q + P
noom. Ooaam. . 1
pl C piw > 5 C s
B A e

591 PIE ml? T
WC: -+ + -
384El 48El 16El K. 7@5
3 2 7
9, = ql PI +m_| 7
24E| 16E| 3EI
ql®> PI* ml

® " 24El 16El 6EI 2



Sample Problem

e Find the deflections at sections C and D.

G
NERRRRRRRAR.
O ciiiiiitilie




Peouen ity

5g(2a)* 5qga’

W. =0, w, = —
- ° 384El 24E)



Sample Problem

 Find the deflection at section C and the slope at section B.

33



« Solution
g

AVMHHé -
-~ 1/2 ——|——|/2;§F7

RITTRERTRIRIIIINEE
q/2 il
ALYTYTYTY :




Sample Problem

« Given d; = 0, determine the relationship between m and P.

AN
-
o

35



e Solution:

— i —|—
A l 1. l
QB:PaZ m-2a:O
2El El
Pa
= m=—

A

36



Deflection and Slope by Superposition

 Superposition of Rigidized Structures:

 Applicable to multi-span beams

 The total deflection of a multi-span beam under a given loading
condition can be determined by superposing several beams
corresponding to rigidizing all but one span of the beam, under the
exactly same loading condition as the original beam.

37



Sample Problem

 Find the deflection at section C of the simply supported

overhanging beam shown.
P

AR A

e Solution

» Deflection at C due to
rigidization of portion AB

Pa’
Wo ==
3El
2
0, = Pa

- 2El

38



 Deflection at C due to rigidization of portion BC

PaL palL
— .q = 0., =60,, =——
W, 982 3E| C2 B2 ™ 3F|
« Total deflection and slope at C:
Wc = Wcl + Wc2 gc = 901 + ch

_Pa’® PaL_ Pa’(a+L) _Pa2 PalL Pa(a Lj

“3El 3ElI  3El “2E 3B B2 3
39



Superposition of Loads & Rigidized Structures

« Given w = 0, determine the relationship between P and g.

N
J

40



e Solution:

_I_

>
<
l—
l—
l—
l—
lt—
o

3

N

@)
¥

ol
3

q P
OO B j
> C D > C rﬁ% D
AN P e SN N g cHF U

_5q(2a)* Pa(2a)’ _ —

N

W. = 0 SR A
C T 384El  16El e
5
=P =—Qa
- C

41



Sample Problem

« Using the method of superposition find the deflection and slope at
section C of the beam shown.

42



e Solution:

ga ga . Rigidizir;g BC
g’
A l 0 g 2 Za_qa-(Za)Zan3
74;7 ©T7T73El  16EI  12EI
_ qa’

C WCZQB.a

12|

Hhu . Rigidizing AB
B C g ga’ . _qa
T 6EI’ ¢ 8EI

4

ANNNRNNN\N

3 3 3 4 4 4
 Total: 6. = S N , W, = a9 _ 98
12El 6El 4El 12El 8EI 24El 43




Sample Problem

A stepped cantilever, as shown, is subjected to a concentrated load F
at its free end. Find the deflection at the free end.

44



« Solution
F
* Rigidizing section BC makes AB El
a cantilever subjected to a A 12 B
I
concentrated load at its free end.
F
* Rigidizing section AB makes A'7—B|
Wag

the whole beam a cantilever. 0,

Wy =Wy + Wy, F
— I
=W, +W; +0; -5 WQ B cI
3PI° 0y -1/2 FI/2

 16E]

45



Sample Problem

e Find the deflections at sections B and D of the beam shown below.

p g 12qa

/

?MHHHM C
A B

7 4
g 2a »F—‘»F—

46



e Solution

 Rigidizing AB
20a(2a)’

W, =0, w, =
° P ASE])

 Rigidizing BC
W = g(2a)°’ s ga(2a)’ _14qa’
° 8EI 3El 3El
_ W, _ 7qa’
° 2  3El

IO b .
JA B D ﬁ
/TF____2%1____’+—_-a_*i&;§g
P
SR,
/ @ P

_ 14qa’ W 70a’ s 2ga(2a)’ 8ga“

° "W, = ’ =
Total: w; 3EI °  3E]|

48El

3El

47



Sample Problem

* For the structure composed of a beam and a frame shown, find the
deflection at the center of the beam AB.

. Solution 2 [P
) I 1
« The deflection at sectionEis A 2 |
associated with the following 7-57- E Bl BT E -
deformations: £l
« Bending of beam AB itself. cA |
 Bending of BC
« Compression and bending of CD D
7777

* Rigidize the frame (BC+CD) A \
3 ZS E
FI

48E|

1
Wg, =

48



. Rigidizle AB + (iD B E/2
WE2:_W|31:_(?) = B //”—EC
2 2 3El 12El Wgo¥
 Rigidize AB + BC
1
Wes = E (Wg, +Wgs) F/i.LFI/Z
L [«
F Wes_ ———7 "\
W —_
B2 = HEA \\
(Deflection at B due to the compression of CD) ]
_g1=[ GO/ FE D
Wy, = 6.1 _[ e = =

(Deflection at B due to the bending of CD)
49



1, Fl FP

W, =— +
=3 2(2EA 2EI)

« Deflection at section E via superposition:

FIE(1 1 1) FI
e =TR DT RE TR RVT=\

_17FP  F
48El  AEA

50



More Examples

2.5 J kN 2.5 kN
6 kN/m 100 mm
=~
/\/\/\/\/\/\/\ BYy y vy yvyvyvvv vC
m — A AI 'D h

B _A_ =

L ! 3m L»

18 kips 0 6 m 0.6 m

3 kips/tt

RNy ¢ yp

AR F 4

—-c—(f—:-——-:—g}'—»l—-c—(}' - (] —



More Examples

66 kN/m 66 kN/m
[ ;. \ g
CITTTTTITTIT] \ wae0 x 74
r Fm /
A B b
AN C D
[
< L=06m > - 52




More Examples

S0 kN /mlOO KN 160 kN 00 1b
l A B C D i
VYV VY V vy yC D | - 1.25in.
/ 2\ Hinge N
Hinge 1.25 in
54 12 in. — 12 in.— I
m /. | 15m i 15m | 6 in
0.6 m
P
300 N 300N 40 N 300N 20mm M, 11’ Mc
B C D E F l’ (
AL JH 30 mm

A\ e
Hlnge T - 3b s
‘ \ [
7 @ 200 mm = 1400 mm
Y rl YYVY *

Y Y 1 LA/
12 mm

jB (‘; DK T

‘ nge

A

Y Y \J

nge

24 mm

O4m 04dm 04m I 0.4m
2b —»‘47 b b 4"*— b — ca



Singular / Discontinuity Functions

(x—a)"

f (X)=(x—a)" =
J(X) =(x—a) io

fo (X) f, (X)

n=0 n:1/

(@) (b)

X=a
X<a

=

a X

(c)

54



Calculus of Singular Functions

f.(X)=(xX-a)" =<

(x—a)" X>a

\O X<a

j(x—a}ndx:i<x—a>””+c n>0
n+1

i(X—a>” =y

0 n=0

dx

n(x—ay"" n>1

55



Equations of Shearing Forces & Bending Moments

F=F,(x-0)°+F{(x—a,)’ +q(x—a,)"
=F,+F(x—a,)" +q(x—a,)"

M = Fo(x=0)" + M, (x =) + F(x=a,)" + 2 (x-a)’

—F,x+ M (x—a)° + F(x—a2>1+%<x—a3>2

56



Boundary Conditions

 Denote the shearing force and bending moment at the left boundary
as F¢, and M,

» Generalized equation of shearing forces
0 1
F(X)=F, +F(X—a,)" +q(x—a,)
 Generalized equation of bending moment

M(X) = M, + F X+ M. (x—2a,)° + F(x—a2>1+%<x—a3>2

57



Deflection and Slope by Singular Functions

EIW' = —M (x)
M (x) = Mo+Fsox+Me<x—a1>°+F<x—a2>1+g<x—a3>2

EIH:—MOX—%XZ —Me<x—a1>1—g<x—a2>2 —%(x—a3>3+C1

M F M F q
Elw=——2x"—x*_—¢(x—a ) ——(x—-a,)’ ——(x—a,)" +C,x+C

C,=Elg, C,=Elw,

58



Boundary Values

* F¢o, My, 6, and w, denote the boundary values of shearing force,
bending moment, deflection and slope

A
<': "I\X é "I\X A ‘-lx
M y [ 7 [ [
" FSO_:OFA’ M—O(): Vi 1 Fso=FaMy=0 Fso=10,M;=0
=0, w, = 6, =0, w, =0 &, =0, w, =0
Fa Fa W
W ‘ Wy

(a) Fixed support (b) Hinged support (c) Free end

59



Sample Problem

 Find the deflection at section C and the slopes at sections A and B for

the simply supported beam shown.

9
HEEEN

A B___ .
X
/2 T
| g !
W
» Solution
1. Equations of deflection and slope
ElO=E1g,—M x-S0, Gys Gy 1y
2! 3! 3! 2
Elw=Elw, + Elgx— o2 _Fso e Qe G Ty
2! 3! 4! 4! 2

60



« Determine boundary values
F, =F, =§q| , M,;=0, w,=0

 Determine &, from the boundary condition at the movable hinged

support B:

3 4
0=Elw|, =E|90|—3q'-I s a9l
8 6 24 2416

( 2

Elf

3
:3ql _3ql x +ﬂx3—ﬂ<x—|—>3
128 8 2 6 6 2

3

e “3al’x 3gl X g

128 8 6 24

3
g - 3ql

°  128El

Elw= + x“—i<x—|—>4
\ 24 2

61



2. The Slopes 6, and &; and the deflection w

3 2
plg=Sa 3l X Gys G 1y
128 8 2 6 6
3 3
Elw:3q| x 3ql x +ix4—i<x—l>4
128 8 6 24 24 2
~ 3ql°
A0 128E] A
2 3 3 1 7ql°
Oy = \X:.—q ( ———)—— A

El 128 16 6 6-8 384El

4 4
WC:\Ni_LZQI ( 3 3 N 1 ) = 50l ‘
2 El '128-2 48-8 24-16° 768El

62



Moment-Area Theorems

« Geometric properties of the elastic
curve can be used to determine

A T deflection and slope.
 Consider a beam subjected to arbitrary
£ loading,
2 0p Xp
A C 5B X dezdzle:J‘dez-‘-de
dx dx

e First Moment-Area Theorem:

&,,c = area under (M/EI) diagram

between C and D.
63



Moment-Area Theorems

» Tangents to the elastic curve at P and P’
Intercept a segment of length dt on the
vertical through C.

dt =x,d@ = xlmdx
El

tejp = j X, —-0dX = tangential deviation of
X C with respect to D

« Second Moment-Area Theorem:
The tangential deviation of C with
respect to D is equal to the first
moment with respect to a vertical axis
through C of the area under the (M/EI)
diagram between C and D.

64



Application to Cantilevers & Beams under Symmetric Loading

 Cantilever beam - Select tangent at A
as the reference.

D Tangent at D QA — O’ yA = O
2T Yp= Tp/aA
) - = Y —
A HD — YD/A
0= O Reference tangent yD _ tD/A
P P

« Simply supported, symmetrically

k/% loaded beam - select tangent at C as

B
--—‘____(-_‘_ﬂ.__-/ [ the reference.
Yp Oc =0 Yo = Yrax

_j_ Oy = D/C
1 :TB.;’(_' yB — yC = _yC — tB/C

Yo = Yc = 1:D/C

Horizontal

Reference tangent Op =Oprc tpic
65



Bending Moment Diagrams by Parts

Shape

Area

(&

Rectangle

|<—— 1} ——»l

Ce

|

o]

}

h

bh

« Determination of the change of slope and
the tangential deviation is simplified if the
effect of each load is evaluated separately.

 Construct a separate (M/EI) diagram for
each load.
- The change of slope, 6,,c, Is obtained
by adding the areas under the diagrams.
- The tangential deviation, t,- IS
obtained by adding the first moments

of the areas with respect to a vertical
axis through D.

« Bending moment diagram constructed

from individual loads is said to be drawn
by parts.

66



Sample Problem

w w SOLUTION:
‘ ; 1 ; ‘ D{ ; ; ; ; : :

| L | S u p p O rts .

 Construct shear, bending

moment and (M/EI) diagrams.
For the prismatic beam shown,

determine the deflection and slope , Taking the tangent at C as the

at E. reference, evaluate the slope
and tangential deviations at E.

67



SOLUTION:

e Determine the reactions at
supports.

RB :RD = Wa

» Construct shear, bending
moment and (M/EI) diagrams.

2 4EI

1 (Wa2 Wa3

wa? (L _WazL

—— @)= 6EI

68



 Slope at E:

O = 0. +‘9E/C = QE/C
wa’L wa’
4El  GEI

= A+A =-

Wa2

O =——% (3L +2
E 12EI( +2a)

e Deflection at E:

Ye = tE/D = tE/C _tD/C

A5l A6

wa [ wa’L wa’l? wa’ wa?L?
=———(2L +a =| - - - }{— }
YE 8EI ( )

4El  16El  8EI 16EI

69



Application to Beams under Unsymmetric Loadings

tB/A

 Define reference tangent at support A.
Evaluate 8, by determining the tangential
deviation at B with respect to A.

* The slope at other points is found with
respect to reference tangent.

HD =9A+9D/A

e The deflection at D is found from the
tangential deviation at D.

E_X Xy,
tyn L L

X
Yo =—FD = —(FE — DE) = —(EtB/A —tD/Aj
70



Maximum Deflection

R(‘fbr(‘n(‘(*/

tzlrget

[\r(’il = 9[\/\ =

 Maximum deflection occurs at
point K where the tangent is
horizontal.

t
O —_ 8~
A L
HKZOZHA—I—@K/A
HK/A_ 0,

 Point K may be determined by
measuring an area under the (M/EI)
diagram equal to -6, .

 Obtain w,,, by computing the first
moment with respect to the
vertical axis through A of the area

between A and K.
71



Stiffness Condition

* Winax < [W] * Omax =< [0]

W ... Maximum deflection
0rax: Maximum slope

[w], [6]: Maximum allowable deflection and slope

 Stiffness calculation include:

- Stiffness check
- Rational design of cross-sections
- Find the maximum allowable loads

72



Ways to Increase Flexural Rigidity

« Deformation of beams under bending is influenced by not only
beam supports and loading condition, but also beam material,
cross-section size and shape, and beam span.

Increase El

Decrease beam span / increase supports

Improve loading

Rational design of cross-sections

73



Sample Problem

« Given: 1=8m, I,=2370 cm*, W, =237 cm3, [w] = 1/500, E =
200 Gpa, [¢] = 100 Mpa.
 Find: 1. the maximum allowable load from the stiffness

condition; 2. Strength check.
| 20a

- 12 == 12
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« Solution
3
W . = i g[w]:l—
A8El 500
= P< 48E|2 =7.11kN
500l
= [P]=7.11kN
o . = M e =i|=60 MPa <[o]
W, AW,

 The strength condition is satisfied.
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Bending Strain Energy

- : 1 o° E&°
e Strain energy density: u==ocg=—=
gy Y 2 2E 2
« Total strain energy calculated from density
o2 2,2
U =[Zav = [2Y gy
* 2E 2El

faarllre,

« Total strain energy calculated from work

done by bending moment w.r.t. rotation Neutral
1 M M Surface

=L dx=pdf =do=—22 N
o El El

2 2
dU = £ mdg = M dx :>U=jLM (%) g
2 2F| 0
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