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Work Done by External Load

A uniform rod is subjected to a slowly increasing load.

The elementary work done by the load P as the rod
elongates by a small dx is

dU = Pdx = elementary work

which is equal to the area of width dx under the load-
deformation diagram.

p U e The total work done by the load for a deformation x;,

X

X x U = | Pdx =total work = strain ener
R | 9

which results in an increase of strain energy in the rod.

In the case of a linear elastic deformation,




Energy Conversion

« \Work done by surface and body forces on elastic solids
IS stored inside the body In the form of strain energy.




o

(@)

Strain Energy Density

To eliminate the effects of size, evaluate the strain-
energy per unit volume,

U, = [0, dé, = strain energy density
0

€ €, €

The total strain energy density resulting from the
deformation is equal to the area under the curve to &,.

As the material is unloaded, the stress returns to zero but
there is a permanent deformation. Only the strain
energy represented by the triangular area is recovered.

Remainder of the energy spent in deforming the material is
dissipated as heat.



Strain Energy for Normal Stress

In an element with a nonuniform stress distribution,

AU dU :
U, = lim = U= IUOdV = total strain energy

AV—0 AV dVv

For values of U, < U, i.e., below the proportional
limit,
2

U= 2IXE dV = elastic strainenergy — E > 0

Under axial loading, o, =P/A  dV = Adx

L 2
P du
U= j Sl j EA( j dx
O2AE dx
For a rod of uniform cross-section,
P2L
U=——
2 AE



Strain Energy for Normal Stress

For a beam subjected to a bending load,

M 2y?
I 2EI° V

AN

A

|
% = _an s 5
Lﬁ | — Setting dV = dA dx,
v —
L Mz ,
ax:# U = J‘J‘FdAdX—J‘ 2E|2(J;y dA]dX
L L 2 2
1
[ gx == El [d VZ"] dx
A 2EI 20 dx
—E>0
) For an end-loaded cantilever beam,
B - —
e = N
I . U —jp X gx= L




Strain Energy for Shear Stress

For a material subjected to plane shearing

T, stresses,
e vy 7/xy
/ U, = j Ty d}/xy
| 0
B Yay
Ty - For values of 7, within the proportional limit,
U, =1G @
= 7/x Ty Vxy =
y y y 2G
The total strain energy is found from
e Yxy

(1+v) 2y

U = jUdv jxydv j

=>G>0 v>-1



Strain Energy for Shear Stress

For a shaft subjected to a torsional load,

In the case of a uniform shaft,
T2L
2GJ

U =




Strain Energy for Hydrostatic Stress

3(1-2v)  -3p

E =& +E,+E, =— =
AT ETE =TT 31+ 2G
K_—p_ E 31+ 26

AV 3(1—21/) 3

1 1 1 3(1-2v
Uo:E( p)gkk:EO-mgkk:RO- (ZE )anw

— K >0 v<0.5
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Strain Energy Density for a General Stress State

o Strain energy density of < Strain energy density of

non-linearly elastic linearly elastic material under
material under generalized 3-D stress states
generalized 3-D stress 1 1 [0, +0,6,+0,¢ ]

U _ —G 8 X X Z " Z
states 2T 2 Lnym Yy TZXVZXJ
dU, = o,d¢g;

—ode +ode +ode * In Terms of Strain
X X y y z z

1 1 1
+7,dy, +7,dy, +7,dy, Yo=70u = z(ﬁgklﬁ +2Ge; )z, =S A6u + oy,
’ 1 2 1 1 1
2 2 2 2 2 2
251(5X+8y+gz) +G(€X+€y+gz+E7/xy+57/yz+57/zxj

e In Terms of Stress

U 1 1 1+v 1% s 1+v 1%
:—O' 8 =—0. O.. ——0O S| = O.0.. —
0 2 ij 2 ij E ij E kk ~ij 2E ij 7 ij 2E

O-kijj

1+v Vv 2
= cl+oi+0l+2t2 +2t2 4212 \-—(o. +0. + 0O
2E X y z Xy yz X 2E X y z
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Decomposition of Strain Energy Density

Z yA
U =U +U (a) Spherical (b) Deviatoric stress
L0 stress tensor tensor
 Volumetric energy density: u, = 3(1-2v) o 2= (1-2v) (0, +0,+0,)°

o _ 2B " 6E
» Distortion energy density:

U,=U,-U, = 12+EV (Gf +05 +ol+ 22'fy + 22'52 + ZTZZX) —é(ax +0o, +GZ)2 - (1;21/)(6)( +0o, +0'Z)2
- 12+EV (ze oL+ oL+ 2T, + 2T, + erx) - (1;;) (ax +o,+0, )2
} 16+EV |:(O-X B O'y )2 * (Gy I )2 + (O-Z Oy )2j|+ l_;V (Txy2 + z-yzz T szz)
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ov)

1
U, = E/ngkgjj +Ggijgij = Eiuk’kuj’j +Ggijgij
1 1 1 1
:Ei(é‘x—l—gy+52)2+G(55+55+822+57/fy+57/52+57/22X
[aujz (ov) [awjz 1( ou
2 Pl Bl v i e
1 (6u ov ow) OX oy 0z Zkay OX
:—ZL + + +G 5 2
2 \ox oy o1 1(8u 5Wj 1(ov ow)
+ — + + — +
2\ 0z OX 2(62 ayJ
E E

Strain Energy Density in terms of Displacement

13



Strain Energy Density for Plane Elasticity

1 1, | 3- | 3-
Uoz—aaﬂgaﬁ:—ZGLE(w— L e s JgaﬁzG & = £

2 2

=G (8X)2+(8y) +2(8Xy) —2(1_K)(6‘X+8

i 2 2 2 27
For plane strain:K:3—4v:U0:G|(a—uj +(6—V\ +l(6_u+a_v\ . (au+6v\ |
| OX LayJ ZLay 8XJ 1—2vkax 8yJ |
_ —v fouY (av) 1feu av) v (ou av)'|
For plane stress: x = U, =G|| — +L— +=| —+— + + |
1+v L OX oy 2\ 0y OX 1-v{ox oy J




Strain Energy Density for a General Stress State

Ay

/
e & I

L >
2

3P 3P y
o _—Exy,Txy :_E(l_c_zj’ Gy =0, :Tyz =T, =0
1+ 1 1+
U, = V(Gf+2ffy)—LGf=—O'f+ Vz'xzy
2E 2E 2E E

0 = [ffusav =[2Gt Tt Jaxave:
_I j (_0_2+1+v 2]dxdy

2
9p? 1 L 9P® y’
. - —x"y* Y dxdy
EJ-c°0 4¢c 0 16¢°
P’L* 9P°L(1+v)

= +
4EC’ Ec 15



The Variation Operator

« Assuming u(x) Is the minimizing path for a functional:
1 (u) = I:F (x,u,u’)dx
* Introducing a family of varied functions: d(x)=u(x)+en(x)
« We call e#(x) the variation of u(x) and write
en(x)=8u(x)=du=d-u, -0, n(a)=n(b)=0
» The delta operator (o) represents a small arbitrary change
In the dependent variable u for a fixed value of the
Independent variable X, 1.e. we do not associate a ox with
a ou.

U
A u(ﬂ
: /_/ U ()
A~ Suw)
> X 16




The difference between ou and a differential du

« A differential du has a dx associated with it.
e Consider the variation for the derivative:

5 d_u :du_du: d (G—u)=i5u
dx dx dx dx dx

In a similar manner:s fu (x)dx = [d(x)dx—[u(x)dx = [su(x)

Consider a functional: F =F (u,(x),u,(x),u,(x),x)
Its variation:
OF oF OF

oF =—o6u, +—>9odu, + —ou,
ou, ou, ou,

In contrast, the differential Is

F F F F
dF :a—du +8—du +a—du +6—dx

ou, ou, ou, OX



Minimization of a Functional

-+ Consider the problem of minimizing 1 (u) = ["F (x,u,u’)dx
 For a varied path, the integrand may be written as

F(X,u+d8u,u’+du’)
« Expanding the above In a Taylor series yields

F(X,u+du,u’+38u’)=F(x,u,u’) ZF 2F, ’]+O(52)
u u
 The first variation of the functional | is defined by

5|:j:5Fdx~j (aF oF ’jdx

ou ou’

oF oF
_J' 5udx+—5u
ou dx ou’ ou’

* The minimizing process leads to Euler-Lagrange equation.
» Essential vs. natural BCs...

a
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Principle of Virtual Work

« A kinematically admissible displacement field is one
possessing continuous first partial derivatives in the
Interior of a domain B and satisfying all displacement
boundary conditions on S,,.

A kinematically admissible displacement variation éu
(virtual displacement) Is one possessing continuous
first partial derivatives in the interior of a domain B and
Zeroon .

A statically admissible stress field is one that satisfies
the equilibrium equation over the interior of a domain B
and all stress boundary conditions over S..

19



Principle of Virtual Work

« Now consider a body with statically admissible stress
field and subjected to kinematically admissible virtual

displacements.
* The work done by
displacements is

the external loads against the virtual

SW_ =mVF .SudV +”ST-5udS

e |In indicial notation

SW._ = "'V F.sudV +

..J-S T -oudS = ”jv FoudV + ”S T.6u.dS

_noouds = [[[ FoudVv +[[ nosuds

g 0 i

 Recall that, dJu=00nS,.

20



Principle of Virtual Work

« Applying the divergence theorem on the surface integral:

5 | | o0 osu. |
sWe =[], Fi5ui+a—xj(aji5ui)JdV =mvri5ui+ > Su; + 0, o Jdv
= F 4 S0 5 T|dv
=T ( +— Jaui+aij(5gij+ o, )

| ]

) 0o |
— .[”V _[Fi + x J&ui +aij§gijJ|dV

0o
={]].| Fi+ G"]5uidv + oW,

OX..

J

e Balance between the external and internal virtual work 1s

an alternative statement of equilibrium condition.
21



Principle of Virtual Work

* Principle of Virtual Work
oW, J”F 5udV+ T 5udS—'jVo-:5ng:5\N|

oW_ = [[[ FsudV + [[ T.6udS = [[[ o.66.dV =W
E JJJy ! I J I I JJy 1 ] I

Js,

o All forces and stresses are constant and need not to be
actual forces and stresses.

 The stresses are independent of the virtual deformations.

 This principle is independent of any constitutive law.

 This principle is NOT about energy conservation, I.e. It IS
valid when energy is not conserved (plasticity, e.g.).

 This principle is applicable to simplified one- and two-
dimensional theories as well, 1.e. 0Wg = F;ou..

22



Principle of Minimum Total Potential Energy

e For an elastic solid U
oW, = [[] 06,0V =[], — SeydV = [[[ oU,dV = U

where U Is the strain energy.
* If we define the potential energy of applied loads as

vV =~|[] F-udv —”S T-uds=-[[[ Fudv ~[[ Tuds

St

 For prescribed (constant) body and surface forces
OV = —mv F -sudV —”S T-6uds = —.'”V F.ou.dV —”S T.6u.dS

* Principle of Minimum Total Potential Energy
§(U +V)=4I1=0.

» Restricted to elastic solids, both linear and nonlinear. N



Principle of Minimum Total Potential Energy

-dV

« Elastic strain energy due to a strain variation
oou,
X

U = || oyoe,av = [[[ 0,6 (& +ay)dV =[] a”aa—x'dv [], o -

_m Lﬁx (o;0u;) —ZT”cqudv_—mv ax”5udV+H n,o,ou,dS

» The corresponding potential energy variation
=—[[], Foudv || T.éuds
* Principle of Minimum Total Potential Energy

0=08l=6(U+V)=- ” {ax

 For an arbitrary displacement variation, the principle of
minimum total potential energy yields the equilibrium
equation and traction BCs. y

J5udV+” (no;—T,)Su,dS




Castigliano’s First Theorem

 Consider an elastic system subjected to a set of generalized
loads F; (forces & moments) with corresponding
generalized displacements u; (deflection, rotation, angle of
twist & extension/contraction). Subsequently,

» EXpress the variation of strain energy in terms of virtual
displacements ou;, 1.e. oU = sU(ou;).

 The total potential energy varlatlon may be expressed as

ST =6U +6V =6U — zFau —5(u ZFkukj

 For equilibrium, we must recuwe
m:a—nau_ o Ju- ZFkuk Su, = a—U—Fé Su, = a—U—F Su. =0
ou. ou. ou. ou.

- For arbitrary displacement variations: | = &<

|
ou. o5




Castigliano’s First Theorem

oU
F =—
ou,

 This theorem Is simply an application of the minimum
total potential energy.

 This theorem is valid for both linear and nonlinear elastic
solids. The specific material behavior only affects the way
how elastic strain energy Is calculated.

 This theorem requires one to write the elastic strain energy
In terms of generalized displacements, , 1.e. U = U(u;).

26



Approximate Methods

* The Principle of Minimum Total Potential Energy states

0=ol1=35(U jjj(ax ]5udV+H (njo; =T, )Su,ds

« Minimizing the total potential energy is equivalent to
satisfying the equilibrium condition and traction BCs

00;
OX
* In many instances, the solution to the above iIs untenable.
« Approximate methods need to be developed.
 The first will be to approximate the total potential energy.
» The second will be to approximate the d.e.
 Both are precursors to the Finite Element Method.

Inside V; T.=n,0; ons..

27



Ritz Method

 Based on approximating the displacement field as a
linear combination of trial functions

U=Ug+> AU v=Vvy+> B v iw=w+>C w,
« where Uy, U, Vg, Vi, Wy, W, are known functions and A_,
B, C., represent undetermined coefficients.
* Uy, Vo, W, must satisfy the displacement BCson S,,.
* U, V., W, must be differentiable inside V, zeroon S,
linearly independent and complete (trig or poly functions).
» The displacement variation is thus
Su = Z%&Am =S, 5A,; sv=YV,8B,; sw=> w,5C,,

28



Ritz Method

« We now have reduced 71(u, v, w) to 71/(A, B.., C.). The
standard variation procedure yields

(arl Ol ort )
0=6I1 = Y |—6A +—6B, +——45C, |=0
oA OB, oC_
« For arbitrary variation of the coefficients A, B.,, C.
@_H: O’ a_H: O’ 6_1_1: 0
OA_ OB, oC,.

 Gliven the total potential energy
[ =U - [[] (Fu+Fy+ Fw)av - [ (Tu+T,v+Tw)ds

ouU

ou .
O[] Tt 0 ] P[] T
_—
ouU A, B, C,, are determined
oC, -], PV _Hst Tow, S =0 from these equations.




Galerkin Method

» The Galerkin method for finding an approximate solution
of a d.e. involves the direct use of the d.e. itself.

» No variational statement is required and hence the method
has broader range of application.

 Recall the principle of minimum total potential Energy

0=o1=35(U Hj[ax ]5udV+H (no;—T,)ou,ds

« We still assume an approximate solution for displacements

U=Uy+ > AUiVv=Vy+> B v iw=w+> C w,

—su=Y M 5A =S u.6A,; ov=Yv,6B,; sw=3 w,4C,.

OA
30



Galerkin Method

 Substitute the displacement variation into the principle

20
-2l
2l

00, 01, o7

X4 + —X 4 Fx}uméAde + Z ”S (nxo-X +n,7,, +Nn,7, —Tx)uméAmdS =0

| Ox o0y o0z
[ Or 80 87

| OX
Ot 5Tﬂ foles

Xy y 2 +Fy}v 5B _dV +Z” Nz, +no, +nz, T )v, 6B dS=0

| OX oy 0Z

w 9% 00, Wm(scde+z” nT,+Nz,+noc,-T, )w 5C dS=0

z

o If the proposed displacements satisfy not only the
displacement BCs on S, but also the traction BCs on S,, 1.e.

no,+nz,+n,7, -T, =0
nz,+no, +nrz7, —Ty =0

nz,+nz7,+no, -T,=0

31



Galerkin Method
 Then, for arbitrary A, B, C,

° Am’ Bm’

]
]
]

_80)(
i OX

6TXY asz + FX
oy 0Z
oo oT
4 ” + I:y
oy 0z
5Tyz @(yz . FZ
oy 01

udv =0
v .dV =0
w dV =0

C,, are determined from these equations.

U=Uy+ > AU v=v+> B v;

w=w;+>»C w,

32



Galerkin Method

* In terms of displacements

]
]
]

GVu+(1+G)

o (ou

oV oW )
_|_

6xk8x
o ( éu

_|_

_I_
oy 0z

oV oW )
_|_

GVV+(1+G)

GV*W+(A+G)

oy | OX
o ( ou

0z \ OX

_I_

_I_

_|_
oy 0z

oV oW )
+ +

oy 0z

F

X

F

y

FZ

u dv =0
v.dV =0
w dV =0

« A, B, C_ are determined from these equations.

U=Uy+> AU ;v=vi+> B v iw=w+>C w,

33



Ritz Method: Application to Plane Elasticity
U=U,+ > AU,;V=Vy+> B v,

ou

™ ~[], Fuu,dA- jTu ds=0; ——[[ Fv,dA- LTyvmdS 0
- A_, B are determined from these equations.
_(aujz (avjz 1£8u asz 3_x [8u avj21
U=G||—| +| —| +=| —+ - + |
OX oy 2\ oy ox 2(1-x)\ ox oy J
] 20} Fau ou, 1 8u+8v ou, 3-x (ou v auﬂ'dA
oA |_8x ox 2|y ox) oy 2(1-x)\ ox ay ) ox |
U ] ZGfavav + ou ov)ov, 3-x (du ov avm1|dA
0B, A | oy oy oy Tox ) ox 2(1-x)\ ox oy ) oy |
For plane strain: kx =3-4v = - 37K .
2(1-x) 1-2v
_ 3-v 3-K 1%
For plane stress: x = = - =
1+v 2(1-x) 1-v
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Ritz Method: Application to Plane Elasticity

* The thin-plate is rolling-supported at T
the left and bottom edge. EEER

 Propose an approximate displacement
solution based on Ritz method and b
solve the plane stress problem. Neglect

body forces. 0

U=X[A+AX+AY+: ]
V=y[B +B,x+Byy+

* Note how the displacement BCs are satisfied.

¥



Ritz Method: Application to Plane Elasticity

 If take only one term, i.e.,u=Ax, v=By = u =x

y

oV
» Substitute back into the principle
v ea, | ou ou, 1fou oviou v [ou ov auﬂ
128 5o E[aer@x 8y+l—v[8x ayJ JdXdy I, (- a)dy =0
- -
b o2 ovov, 1({ou ovi|ovy, v (ou ov v, | B
IOIOZG_EQ E[ay+ax 8x+1—v£8x ay] deXdy I ), (b)dx =0
jobjoaze A (1)+ ;(0+o)() — (A B,)(1) |dxdy - j —q,)ady =0
= - q
IobjanG_Bl(l) ;(0+o)() (A1+B)()_dxdy [ (~a,)bdx =0
= 1Eab [A +vB,]+gab =0, 1E_ab [B,+vA]+0g,ab=0
q-vd, L 9,-vO
= Al—— = , B, =-

* For the present case, A, and B yleld the exact solution.

Just a special case!
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Ritz Method: Application to Axial Loading

 Consider a variable cross-section rod subjected to a
uniformly distributed load and a concentrated load.

b
/ a |
~ — —n - . — e J——-——'}b- —
/ P x
A
/
L E2dx L du L
[M=U+V = N —'[ fudx — Pu__ =—I EA dX—_f fudx - Pu,_
0 2EA Yo dx °

* Assume: U=uUy+>» AU, =0+AX+AX

* Note how the displacement BCs are satisfied.
oIl oIl

-0; —=0.

» The standard variation procedure yields: 5o =™ aa
» Solving the above two equations for A, and A,, an
approximate solution are constructed.
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Ritz Method: Application to Beam Theory

 Consider a beam subjected to a uniformly distributed load

o ASSU me: . \ \ \ \ \ \ q" \ \ \ \ \ \ \ - -
~ . mrxX ; ;
v=> B, sin z L | X
— L r "
* Note how the displacement BCs are satisfied.

M “d (davY
[I=U+V = J' SE| —_[ qux_—j EIde de J'qux

1 .L ” mz )’ _
:EIO El L—mZ;Bm (Tj Sin

 Note the orthogonality of trigonometric functions

n7Z'X—| mi X

JL ZB( j sinTde J qZB sm—dx

m7TX

sin
0 m = n

L maX . NxX L/2 m=n
I SIN X =
L L

38



Ritz Method: Application to Beam Theory

« Upon evaluating the integrals

Elz* & 2L & B
74 Y E— T m-izs.. M
 The standard variation procedure yields:
[ 4qL*
1 = odd
Mo = B,=1EIm°z° m=0
OB
0 m = even

* The approximate solution is found

4Ll & 1 . mzxx
= Z —53|n

V= 5
Elﬂ«- m=1,35, m L

« Symmetry requires all even terms vanish.

39



Ritz Method: Application to Beam Theory

 Consider a simply-supported beam enhanced by an elastic
column as shown.

NN
x

e % V23 T

K.
» We may still assume: v = Za SmmTX

fdv\ L 1
S T=U+V = [El dx — | gqvdx——=kv?*(L/2
j — J avdx——kv* (L/2)

e The rest iIs left as an exercise!
40



Galerkin Method: Application to Plane Elasticity

e In terms of stresses

8(7 87 @T 80’
‘” X+ Xy_|_FX UmdAZO, jj S y+Fy deAIO
B aX ay i i ax ay )
* In terms of displacements
i 26 o(ou ov) _ |
GV°u-— + +F |u dA=0 o
'U 1—x @X[ax 8yj x | M'm Plane strain: x =3 —-4v
: ( ) : Plane stress: x = 3—v
” GV 2y — 2G 0 au+8v +F, [v,dA=0 : .
i 1-«x Gykﬁx oy

A, B, are determined from these equations.
U=Uy+ > AU ;v=v+> B v,

41




Exercise

 For the thin plate shown, the H
displacements along the top edge are RREE Lt
confinedto u=0; v=-n(1-x*/a*). |

» Propose an approximate displacement
solution based on Galerkin method

-

and solve the plane stress problem. “““““ ~~~~~~~~~
Neglect body forces. ° °

u{l_x_z\u

-

a’lab

X
1-—
d

(1—%)[A1+ Ay+AXE+AY +
Vy [

Jol

]
1—X—2\l£1—1j[8 + B,y + BX* + Byt 4]
aZJb b 1 2 3 4

* Note the symmetry property of the proposed displacements.

”{Vzu ;

1+v ©

ou ov

1-v OX

|

_|_
oX oY

1+v 0 Léu GVT

T dA = v dA=0
jJum A=D ”LV V+1—v8y 8x+8y Jvm B
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Galerkin Method: Application to Beam Theory

. u:WzO’V:VO—i—ZBme
v must also satisfy the
force BCs.

T T L

o

i\\ma

N

e =

a

—

b

N
I

L

)
L G)I) /

V
» The second equation of the Galerkin method yields

0T

M=

o
b |1l
Sy

0 OX

:jOL[—EI

8Gy 0T

oy

0

d*v
dx*

* Note the sign conventions of deflection, slope and moments.

Txy —I a
8x vmdAde + jo qv. dx+ P, v_

v_dX + _[Oa qv. dx+ P, v_

C ]
+——+F, |v,dV =0
0z J

'
b_MOVm

X=

Xx=L

’ JR—
b_l\/IOVm x=L_O

=0

}vmdx + joaqvmdx +Pv,|  —Myv,

=0

Xx=L
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Sample Problem

o Let us revisit the beam problem

 We may still assume: ; HERRN R EEN
z Mz X Z

v=> B_sin L
mz_ll L Yr

 The displacement BCs are satisfied: v(0)=v(L)=0
e The traction BCs are also satisfied, 1.e.
M (0)=EIV"(0)=0, M(L)=EIv"(L)=0

 Galerkin method yields

L d*v L
jo (—EI jvmdx+jo qv,_dx =0

dx*



Sample Problem

* Plug in the proposed deflection

L L L

 Note the orthogonality of trigonometric functions

4
— —EIB_ (m—ﬂj L—qi(cosmﬂ—l) =0

L 2 mrz
( 4
2qL* (cosmz —1) 4qI; - m = odd
= B, =- — =43 EIm°z
Elm 'z
0 m = even

 The same solution as that of Ritz method.

4
L n n
= [EIZBH(—EJ sinﬂ]sinwdx+joquin 7% d4x = 0

45



Complementary Strain Energy Density

« Recall that the strain energy density Is defined as du, = o, de,

« Similarly, we define the complementary strain energy
density du, = g, do,

« It 1s the area “to the left” of the stress-strain curve.

« For a linear elastic solid, U, = U,".

« U, Is often expressed in terms of displacements or strains.

. UO* IS often expressed in terms of forces or stresses.

G:I I f\o\f\\\nea;r _ M T‘:f
elavtic e
L \g ~
%‘r > Lu
%\1 .
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Principle of Complementary Virtual Work

» Thus far we have focused on varying the displacement
field while keeping the stress field fixed.

« Here we consider varying the stresses while holding
displacements fixed.

A statically admissible stress field is one that satisfies
the equilibrium equation over the interior of a domain B
and all stress boundary conditions over S..

60‘ij
OX;
 Consider a statically admissible variation in stresses

, —
oy =0+ 50”

+F =0; no, =T, onsg,

850'”
e —

+F =0, no;=T on§s OX,

!
80”

OX J.
/ 47
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Principle of Complementary Virtual Work

« On S, a variation in surface traction is induced
ol, =noo; ony,
* The internal complementary virtual work done by the
virtual stresses against strains

oW, = [[[ &,50,0v = [[[. (&, + @, ) 60,4V = mv%aa”dv

:
=:'[V|L£(ui5aij)— 71 Jdv ”VGTU&T

J
= [[,nui00,08 = [ nu, go7dS + [[ njudo,ds

= [ usTdS =6wW,

ooSu

* IS equal to the external complementary virtual work
done by the virtual tractions against displacements on S,..



Principle of Complementary Virtual Work

« All displacements and strains are constant and need not
to be actual displacements and strains.

 The strain and displacement fields are independent of the
virtual stresses.

 This principle Is independent of any constitutive law.

 This principle is applicable to simplified one- and two-
dimensional theories as well, i.e. S(W.™ = uoT..

oW, = [[]. &,60,dV = || u,sTdS =W,
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Principle of Total Complementary Energy

* For an elastic solid )
oW, = ||| e,60,0v =[] i so,dV = [[[ 6Udv =6U"

@Gij

where U™ is the complementary strain energy.
* The complementary potential energy of appliec

Vv =—mvu-|:dv —j.;u-TdS :—_mvuiFidV —j.'

 For prescribed (constant) displacements
~[[], u-6FdV —[[ u-6TdS =~[[[ usFdV -] usTds

SV

~[[[ v, {% dv - [[, un; go7ds - [[ u,oTds

loads
u.T.dS
S

—”Suui5TidS = —5W,

*

5\NI*:5VVE
:»5(u*+v*):5n*:o
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Principle of Total Complementary Energy

 Of all stress fields that satisfy the equations of
equilibrium and stress BCs on S,, the actual one Is

distinguished by a minimum value of the complementary
energy.

* Since the actual stress must satisfy the compatibility
condition, this principle Is an alternative statement to
stress compatibility.

» Restricted to elastic bodies, both linear and nonlinear.

 This principle implies that the stress variation must
satisfy the equilibrium equation with zero body forces
Inside V and traction BCs on S,.
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Castigliano’s Second Theorem

 Consider an elastic system subjected to a set of generalized
loads F; (forces & moments) with corresponding
generalized displacements u; (deflection, rotation, angle of
twist & extension/contraction). Subsequently,

 Express the variation of complimentary energy in terms of
virtual loads oF;, i.e. oU™ = 6U™(JF)).

 The total complementary energy variation 17* IS
Ol =8U" + 6V =6U —Zu SF, _5(u _ZUKFKJ

 For equilibrium, we must requwe

o1 o ( + < ) (oU” ) (U™ )

Sl = —6F = U’ - F [0F =| —-uJd, |F. =| —-u. [6F =0
SR s e b e o

« For arbitrary force variations: |u. = ZLF
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Castigliano’s Second Theorem

ouU”
ui = —
oF,

 This theorem is simply an application of the
complementary total potential energy.

 This theorem is valid for both linear and nonlinear elastic
solids. The specific material behavior only affects the way
how complementary energy Is calculated.

« This theorem requires one to write the complementary
energy in terms of generalized forces, , i.e. U™ = U “(F)).
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Application to Beams and Trusses

« For linearly elastic bodies: U~ = U .
* In the case of a beam:

L 2
) M
Uu' =U =j dx
) 2E|
ouU <M oM
= U =—=|——dX
oP < El 0P
e In the case of a truss:
U =
Z2E A,
Loy _ZFkLk OF,

~ E A 0P




Approximate Solution

» The Principle of Total Complementary Energy states

000
ij
x dv _”st u;n 6o, ds

« Minimizing the total complementary energy requires

000 o
L=0, insideV; 6T, =n.00, =0 on§,.
OX .
J

oz(sn*=5(u*+v*)=mvui

* In many instances, the solution to the above is untenable.
« Approximate methods need to be developed.

« We aim to find an approximate stress solution that satisfies
the equilibrium condition inside V and the traction BCs on
S
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Approximate Solution of Virtual Stresses

 Based on approximating the stress field as a linear

combination of trial functions: o = gi‘j’ + Z Amgi;_“
m

- where ¢;° and ;™ are known functions and A, represent
undetermlned coeffl(:lents

* A stay the same for all six stress components, since
altogether six stresses must satisfy compatibility.
o;;” must satisfy the equilibrium condition inside V and the
traction BCs on S..

* o;;" represent Imearly Independent functions, preferably
form a complete base, and must satisfy

80 _
=0, Inside V; n.o; =0 onS,.
OX ;

56



Approximate Solution of Virtual Stresses

o _ 0o, .
» The stress variation Is thus: 5o, =>" aAmJ SA, =Y o[ 5A,
- We now have reduced IT"(oy) to IT°(A,,). The standard
variation procedure yields

0=¢T"=6U"+6V =6U" - [ usTds :5U*—HS u;n 8o, ds

JS

=5U" ~[[ un, Y o7 5AdS = ZyaAm —Z(HS uinjai;”ds)(SAm

OA
* For arbitrary variation of the coefficient A
mn U’
2o = ([ unonds
OA, OA S,

« Ifu;,=0o0n S, orno S, at all, the solution can further be
simplified to AU */6Am 0.
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Application to Plane Elasticity with S, Only

 Recall that for a conservative body force field, the In-
nlane stress components of a plane problem are

Oy O’y Oy oV oV
Oy = 2 1y 2 1 ¥ xy Fx___’ Fy___'
oy OX OXoYy OX oy

* Instead of dealing with all three stresses, we choose to

approximate the single Airy stress function as a linear
combination of trial functions

v =y, + ) AW,

 where y, and y, are known functions and A, represent
undetermined coefficients.
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Application to Plane Elasticity with S, Only

* The stress field resulted from y, must satisfy the in-plane
equilibrium condition and the traction BCs on S,.

oo’ Ot or.  0Oo,
Ix 4 ~+F, =0, -+ —>+F =0
OX oy OX oy

n 0 +nyTXy =T, nXZ'Xy-I—n G =T, on S,

v represents m linearly independent functions, preferably
forms a complete base, and results in stresses that satisfy

oo . 0T, _o 07, N oo, 0
OX oy OX oy

na +ny2'xy—0 nxrxy+n0' =0 OnSt

« With the help Airy stress function, the equilibrium

conditions are automatically satisfied. o



Application to Plane Elasticity with S, Only

* The principle of total complementary energy states
0=6ll"=6U"+6V =6U"—| . USTdS

Ifu;=00nS,orno S, atall: 5V*: 0.

0=06U" = [[[ 6U,dV = mv ——d0,dV = || &,60,dV

For plane elast|C|ty, the prlnC|pIe IS reduced to
0=6U" H (5 60, +¢&,00,+2¢, 0T, )dA

For plane strain problem (Imear elast|C|ty)

1-v 1% 1-v 1% 1+v
E, = - (O-X_l—vgyj’ &, = - (Gy—l_vax), Eyy = - T,y
For plane stress (linear elasticity)

1 1 1
eo= (o -vey). 2, = *EV%, ¢, = (0, ~vo,)
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Application to Plane Elasticity with S, Only

* If the plane domain is simply-connected, V is harmonic,
and there is S, only

T
v T
T

ne governing Airy function equation Is biharmonic.
ne stress field Is independent of elastic constants.
ne stress field Is identical for plane strain and plane

stress.

* Th

0=06U"

e principle can thus be reduced by setting v = 0:
= ”A(gx5ax +¢&,60, +2¢, 57Xy)dA = i” (7 éoc,+0,60, + ZGXy5TXy)dA
w=wo+ZAmwm = Sy = Z SA,
o° Sy _ z//m 96y 0%y _
oo, = oy Zwm5Am Z OA,, oo, = o Z o OA,,
5t __ P =—Za InsA,
OXoy oXoy 61




A

o=]I,
=11,

) -
_ ZM”””AL[Z;Z ny

| 0,00, +0,00,+20,,01,,

(5

dA

o’y
ox’

O’y

0°w
oy°

o

ox’

82
+\/j

pplication to Plane Elasticity with S; Only

82t//m

 Plug In the expressions of stresses and stress variations

ox° OXdy

+\/j§2
O’y 621//m—|

Y dA
oXoy 8x8y_J

ox*

+ 2

* For arbitrary variation of the coefficient A

II,

(621,”

L

2
+Vja "”2”‘
oy

"\

oy°

(821,”
Ox’

+VJ

\ 2
Wm+2

OA +2 2: O A,
OXoy

0%y 82wm |

OX*

OX0y OXoy |

}dA

dA=0.
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Sample Problem

e Determine the stress field in the /ﬁ ) a d 3\
rectangular thin plate. F=0.  (— X
[ y?) \;o 7/
(Gx)x=ia = Ll_ _J (Txy)x=ia =0;
: Y

(Gy)y:ib = O’ (Txy)y:ib = O
 Solution: approximate the Airy stress function as
V=Wt ) AW, =Vt D AW,

1 ( ) 2 _2\° (2 2\ 2 2
=ay Ll—éjﬁx —a®) (y*-b®) (A +AX +AY* + )

* y, satisfies the tractions BCs and ., satisfies the zero-

traction BCs, as required.
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Sample Problem

* Include A, only and substitute into the principle

i oy oy, Oy iy, 0 v, ]
L@y oy° T ox OXOy OXOy

dA=0

A 64 256 b? , 84 b*) g
7 49 a* 7 a4J a‘b’
« For square plate: [y X\ (, 3y

o, = qu—a—J—O.NOq (1— az} (1— 3a2 j

2
A =00425- = |5 =-0.1700 1—3ij(1— ) }
a a

2 2
r,, = —0.6800 1—X—](1—y— ol

 Higher accuracy can be achieved by including more terms.
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Application to Torsion of Cylinders

e Two non-trivial stresses in terms of
Prandtl Stress Function y = y(X.y)
oy oy

=—, T, =——"
oy OX |

» The principle of total complementary energy

T

XZ

0=0I1"=6U"+6V" = ||| &6o,dV -] ioTds 1,
= [[[. [ 26,07, + 25,67, ]dV - [ uoTds

— éj”v _TXZ5Z'XZ + TyZ&'YZ]dV — HS U.oT.dS

Ly loyosy oyasyl.
_va_ay o e dv HSUui5TidS
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Application to Torsion of Cylinders

* = pXy)

 Relative angle of twist between ends: alL

 Variation of Torque at ends: 0T
[ oy 05y L ov 05y |

) . L
0=06U"+6V :E”A\by o

Loy asy oy ooy |
_G”/{ay oy " ox axJ

OX OX

* The total complementary energy results in

” Oy OOy L Oy sy
Al OX  OX oy oYy

- 2Gaoy

dA—ZaL”A&ydxdy

dA

* = y(Xx,y): Prandtl Stress Function for torsion.

JdA—(aL)5T

=0
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Application to Torsion of Cylinders

» Propose an approximate solution of the form:y = > A v, .

« where A are undetermined coefficients and v, are known
functions that satisfy v, = 0 on lateral boundaries.

 The total complementary energy results in

aw(a ow ) ow(o <oy . ) (< oy . )l
S5 A SA_ |-2Ga dA =0
=l L5XL on N ) oy oy 2 om0 )0 2, "))
s oa ] Faw[a ay/] aw[a anZGaawdA:O
Al Ox | Ox OA oy \ oy oA, oA, |

B | oy oy oy dy,, | B
_Z5Am”AL P +8y 5y 2G0[l//deA—0

_” oy o, +51// o,

e For arbitrary 5Am: AL OX OX oy oy

—ZGawm}dA: 0




Sample Problem: Torsion of Rectangular Cylinder

le

« Boundary equation scheme does not work.

« Membrane analogy: w = 0 at the boundaries;
symmetric about x & .

 Propose an approximate solution 2

W = Z Amnwmn _ (X2 _az)(yz _bz)z Amnxzmyzn
« mXn equations for mxn coefficients A,

oy oy Oy OV | B
”AL o +ay o ZGawandA—O

* If we take three terms only:
v = Z[Aool//oo + AW+ A01W01] = (X2 _az)(yz _bz)(Aoo T A10X2 T A01y2)'
 The principle results in three equations
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Sample Problem: Torsion of Rectangular Cylinder

J‘a J‘b Oy Y o N Oy Oy
—ad-bl Ox  oOX oy oYy

— ZGal//OO}dXdy =0

-2Gay,, |dxdy =0

" Ib Oy Oy, Oy dwy
—adehl Ox OX oy oy

-2Gay,, |dxdy =0

J‘a J‘b _5',” al)”m n 59” an
-as-bl Ox  OX oy oy

* Substitute y and ., Into the above and implement the
calculation

105G«
8A

B 335G«
8A

B 105G«
8A

(19a* +13a%b* +9b*), A, =

Ao (9a*+b*), A, (a®+9b?)

« where A =45a°+509a*h”+509a°bh* +45b°.
 Higher accuracy Is achieved by including more terms.
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