Torsion of Prismatic Bars
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 Elastic Cylinders with End Loading

« Torsion of Cylinders: General formulation
 Stress-Function Formulation

e Displacement Formulation

 Membrane Analogy

« Solution: Boundary Equation Scheme

« Solution: Fourier Method — Rectangular Section
 Multiply Connected Cross-Sections

* Hollow Sections



Elastic Cylinders Subjected to End Loadings

o Semi-Inverse Method
* Zero lateral forces: o, =0, =17, =0. ,
 Let us guess the most general form for stresses T
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Elastic Cylinders Subjected to End Loadings

« Beltrami-Michell Equations
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Extension of Cylinders

Assumptions

Load P, is applied at centroid of cross-
section so no bending effects

Using Saint-Venant Principle, exact end
tractions are replaced by statically
equivalent uniform loading

Thus assume stress o, Is uniform over
any cross-section throughout the solid

P
= Gzzi,rxzzryzzo

Using stress results into Hooke’s law and combining with the strain-
displacement relations gives
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Torsion of Cylinders

Guided by Observations
from Strength of Materials:

* Projection of each section on x-y
plane rotates as rigid-body about
central axis

« Amount of projected section
rotation is linear function of axial
coordinate

e Plane cross-sections will not remain
plane after deformation thus leading
to a warping displacement




Torsional Deformation

 In-plane / projected displacements
Uu=-rgsind=-py, v=rpcosd=px

* Angle of twist: [ = «z.

e The warping displacement is assumed to be
a function of only the in-plane coordinates

= U=-ayz, V=aXz, W=W(X,Y).

e Now must show assumed displacement form
will satisfy all elasticity field equations



Stress Function Formulation

e Strain and stress field

Uu=-ayz
V =aXZ
w=Ww(X,Y)

o Equilibrium equations result in
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o Stress compatibility is

automatically satisfied.




Stress Function Formulation: BCs

e On lateral surface

l=gin+gn +7, W =0=0=0
Tyn=%HX+7y/ny+sz/nz/=O:>O:O

T n,+7,n, +0/n/:0:>

z XZX

a_‘//d_y+(—a—l//j( dxj O:>dl// 0, I1.e. set: r,uz:O.
oy ds OX ds ds

* Onends: T =+7,, T =%7,, T =0, =0
e More interested In satlsfylng the resultant
end-loadings

iI:O:PX:_U T, dxdy :0=PF, ” 7 ,dxdy

E:OzPZ =J-J.A;72/dxdy, .O:MX:”Ayyz/dxdy

EI:O:My :jIAnydxdy, @:T =M, :HA(Xryz—yrxz)dxdy
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Stress Function Formulation: BCs

* On ends (with a big help from the Green’s theorem)

—|5] are automatically satisfied.

| jAfxzdxdy o L%/’ dxdy = — L X = L yn,ds=0  satisfied

” ryzdxdy:—ﬂ 8—l//dxdyz—_[ wdyz—J wn ds=0 satisfied
@ T = ﬂ Xt, — Y7, dxdy_—” (x—+y jdxdy— ”( ﬁy) Zw)dxdy
=W+2”Ay/dxdy = T=2”A¢//dxdy

The assumed stress function yields a governing Poisson equation.
The stress function vanishes on the lateral boundary.

The overall torque Is related to the integral of the stress Function.
The remaining end conditions are automatically satisfied.
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Displacement Formulation

e EXxpressing the equilibrium equation with warping displacement
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e BCs on the lateral surface:
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Displacement Formulation

e BCs on the ends
ﬂ:O: P, :”Arxzdxdy, 2]:0=PF, :ﬂAryzdxdy

3 :O:PZ:”Agz/dxdy, 4 :O:MX:”Aygz/dxdy

5[:0=M, :”Ax;{dxdy, 6):T=M, :”A(Xryz—yrxz)dxdy

ﬂ— 5| are automatically satisfied.

6:T=M, =”A(Xryz — yrxz)dxdy:ﬂ{xG (ax+é—a\;vj— yG (—ay+;—a\;\lﬂ dxdy

_ 2 | \2 ow _ ow _
=T _G”A(a(x +y )+xa—y&jdxdy_a\]

J=G X“+y +———— dxdy... Torsional Rigidit
H[ - j y.. gidity
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Formulation Comparison

Stress Function Formulation

2 2
Vzw:aw+aW:—ZGa € R

ox>  oy°

w =0 e Lateral Surface
T:ZHAwdxdy e Ends

Relatively Simple Governing
Equation

Relatively Simple Boundary
Conditions

e Displacement Formulation

d 1 d
=295 )

e Lateral Surface

2 2y, OW oW
T_G”A(a(x +y)+xa yaxjdxdy

e Ends

Simple Governing Equation
Complicated Boundary
Condition
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Membrane Analogy

 Consider a thin elastic membrane stretched with uniform tension
over a closed frame and subjected to a uniform pressure.

Deflected Membrane Ndy 4: Ndy
------------- T - -~ Ndx
N o2 —+t dx
i or pdxdy OX OX
OX
g Membrane Element Ndy
X
> X

Static Deflection of a Stretched Membrane
Equilibrium of Membrane Element

e The equilibrium of a membrane element requires

oz 0°z oz oz 0°z oz
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Membrane Analogy

 The membrane is stretched over the boundary of the frame

z=0o0n S
* The volume enclosed by the deflected membrane and the x-y plane
V = _”A zdxdy
 Membrane Equations e Torsion Equations
2 2 2 2
8Z+GZ:_£ 6"Z+al/2/:—26a
ox° oy’ N ox® oy
z=0on S w=00n3S
\V :.UAZdXdy T :ZHAz//dxdy

e Equations are same with: w=2z,p/N=2Ga, T =2V
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Membrane Analogy

« Along any contour line, the resultant shear stress must be tangent
_dy N dx _ Oy oy
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Membrane Analogy

» The shear stress at any point in the cross-
section is given by the negative of the
slope of the membrane in the direction
normal to the contour line through the
point.

* The maximum shear stress appears always
to occur on the boundary where the largest Gontour Lines
slope of the membrane occurs.

« Using membrane visualizations, a useful
qualitative picture of the stress function
distribution can be determined and
approximate solutions can be constructed.

e The torque is given as twice the volume
under the membrane.
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Solutions Derived from Boundary Equation

 |If boundary is expressed by relation 1y
f(x,y) = 0, this suggests possible
simple solution scheme of N y) =0
expressing stress function as = s
Kf(x,y) where K is an arbitrary
constant.

» This form satisfies boundary
condition on S, and for some simple 4
geometric shapes it will also satisfy
the governing equation with
appropriate choice of K.

Boundary-Value Problem

.. 82 82
« Unfortunately this is not a general f+ f:_gga c R
solution method and works only for 2N
special cross-sections of simple y=0 € S

geometry. T:ZHAwdxdy e Ends
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Elliptical Section

N

2 2
e Look for Stress Function Solution: v =K [¥+§—1].

« ysatisfies the BC and will satisfy the governing equation if

2152 2152 2 2
K:_abGaz abGa(X y _1}

— W =- +
a’ +b? a’+b* | a®* b?

« Since the governing equation and the BC are satisfied, we have
found the solution.
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Elliptical Section

 Relation to the carrying torque

T:ZHAwdxdy: 22 i(t?a( _U 2dxdy+—” y“dxdy — H dxdyj

_|_
a+b* la* 4 b’ a®+b°
« Angle of twist per unit length

2 2 2 2
_at+b’ o W:_T(ery_l)

o 2a2b26a( 1 za® 1 zaB —ﬂab] _ 7a%hGa

7a’h’G rab| a’
o Stress field (two-fold symmetry)

T, = G_l,u__ 2Ty3, Ty, =—8W ;( sz+ryz
oy ab ox rma’b 7zab \/ a*

« The maximum shear stress (Strength of Materials vs. Membrane

aneloay) Toax =7 (0,2D) = 21

2
rrab -0



Elliptical Section

« \Warping displacement (two-fold symmetry)

T (b? —az)
- 7a®’G

Xy

o If a =D, the results degenerate
to torsion of circular shafts.

(Displacement Contours) 21



Equilateral Triangular Section

 For stress function try product }
form of each boundary line /

equation

W = K(x—\/§y+2a)(x+\/§y+2a)(x—a)

2d a

« ysatisfies boundary condition E
and will satisfy governing
equation
2 \
agg oy ——ZG(x If K——G—a
X2 oy? 6a

 Since governing equation and boundary condition are satisfied,
we have found the solution.
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Equilateral Triangular Section

 Relation to the loading torque

3
TzzﬁA://dxdy_FGaa ==Gal,
53T 5T 2 2 4
_ = o1 =(f (x dxdy = 3+/3a
27Ga* 3Gl i IA( Fy’)dy =343
o Stress field (three-fold symmetry)
Ty = aw - Ca (X_a)y’
oy
Tyz:—aaw Ga (X* + 2ax — y?)
X

= Toax = Ty (a,0) = EGoca = 5\/51
2 18a

« \Warping displacement (three-fold symmetry)

w:j(%+ayjdx = W:%y(sz—yz)

(Displacement Contours)
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Additional Examples Using Boundary Equation Scheme

y=+a’+cx?® 4

X =4a’ +cy?

X =—/a’ +cy?

a +cx?

Section with Higher Order
Polynomial Boundary

w =K(a* - x> +cy’)(a* +cx* —y?)

_ Ga _a_
RPN TR V8

Trnax = T(ia! 0) = T(O’ ia-) = \/EGCZa

r =2acosO

Circular Shaft with Circular
Keyway

" =G7a(b2 - rz)il— 2acos@j

r

Asb/a—0: T Doy — 2Gaa _ 2

(Tmax ) shaft G aa

.. Stress Concentration
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When Boundary Equation Scheme Does Not Work?

A A y
y

General Triangular Section Rectangular Section

* Trying the previous scheme of products of the boundary lines
does not create a stress function that can satisfy the governing

equation.
25



Rectangular Section — Fourier Method Solution

 Previous boundary equation scheme will not creat

a stress function that satisfies the governing
equation. Thus we must use a more fundamental
solution technique - Fourier method. Thus look
for stress function solution of the standard form:
v=y,+y, with v (xy)=Ga(@ -x)

e The homogeneous solution must then satisfy

Vi, =0, w,($¥a,y)=0, w,(x,xb)=-Ga(a®-x%)

« Separation of Variables Method

v, (X, y)=X(X)Y(y): Vi, =0 = XY +XY"=0 = >

Y"-2%Y =0 Y = Csinh 4y + Dcosh Ay

{X”+12X:O {X:W+Bcosﬂx
= =

Wh(ia, y):O:ﬂa:%nﬂ" n=135,---

f

Y

a

X”_ Y”_

Y

2
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Rectangular Section — Fourier Method Solution

Homogeneous solution

v, (X, y)=BDcosAxcosh Ay = ZB cos X cosh 7Y n=135,...

2a 2a
2 2 nzb N7z X
=y, (X,1b) =-Ga(a® — x) = Z(Bn cosh—jcos—, n=135,--
n=1 2a 2a

By Fourier cosine series

X)=%ao+iancos@, an=lg'|-(:f( cos—(’b N=012-.

2 (n-1)/2
B COS hn_ﬂ.bzzo( Ga(a2—§ ))COS—é Bn:_SZGaa( 1) -
28 @ N’z coshL
2a
2 _ 1\(n-1)/2
= y =y, +y, =Ga(a’ —X )—32(30[a > =Y cos X cosh Y
n=1,3,5-- n3 cosh n_ﬂ'b 2a 2a
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Rectangular Section — Fourier Method Solution

e Stress field
oy _ 16Geaa i (—pnvre NZX op N7Y

ey ot A5 2 cosh nzb " 2a 2a
2a
o _ 1\(n-D)/2
T, = v _ 2G _1662aa (=) sin X cosh 2Y
OX VA n=1,35.- n2 cosh Lﬂ.b 2a 2a
2a
- 1
f1n = 7,,(a,0) = 2Gaa - 2522 —
n=135n? cosh ——
2a

 Relation to the loading torque

16Gaa’d 1024Gea* & 1 nzb
T=2 dxdy = = —tanh—— =>a=-
-U-Aw y 3 72_5 n:]_,;,g.. n5 2a

« \Warping displacement
Raa’ i D)"Y nzx nzy

3
T =135 % cosh———

.
W:j(éﬂxy)dx = W=aXxy-—
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Rectangular Section — Fourier Method Solution

(Stress Function Contours) (Displacement Contours, «/b = 1.0)

{

f
NIy
T

) Il
;.'i':l'-i‘iiii
TR

(Displacement Contours, a/h = 0.9) (Displacement Contours, «/h = 0.5)
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Thin Rectangles (a<<b): Open Thin-Walled Tubes

 Investigate results for special case of a very thin 1y
rectangle with a << b. Under conditions of b/a>> 1
b
coshn—ﬂb—mo, tanhn—”b—>l, 2a=t :T:@Gaa%:EGaAtz, o= 3T2
2a 2a 3 3 GAt al X

2 2
v =Ga LA :3_T2 U el —~7 = v ST
4 AL | 4 ax ), At

» Torsion of sections composed of thin
rectangles: Neglecting local regions .’
where rectangles are joined, we can use l
thin rectangular solution over each
section. Stress function contours shown
justify these assumptions. Thus load g
carrying torgue for such composite

section will be given by: / ST '
a=3T/G E t.
i=1 A I

e The maximum shear stress can be
estimated for the narrowest rectangle.

(Composite Section) (Stress Function Contours)
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Multiply Connected Cross-Sections

e On all lateral boundaries: %"S’ 0 = y, =Constant,

 Value of y; may be arbitrarily chosen only on
one boundary, commonly taken as zeroon S .

* The single-valuedness of warping displacement
requires:

T, :G(—ay+a—wj, 7, =G ax+a—w
OX oy

0= <I> dw = CJS (ﬂdx+@dyj = é(j)s (rxzdx+ ryzdy)+ a(ﬁs(ydx — xdy)

oy
:_cﬁ ds+a ) —_ Cﬁsr(s)dS=ZGaA,

o where A is the area enclosed by an arbitrary closed-path S that is
encircling an inner boundary S;.
* The value of ; on the inner boundary S; must be chosen so that

the above relation is satisfied. "



Multiply Connected Cross-Sections

e The BCs on cylinder ends require

1:0=P = ”ATX”dxdy, 0=P, = _UATy”dxdy

E:O: P :HA%(dxdy, :O: M, :”Ayﬂ(dxdy

E:O: M, :”Ax%(dxdy, @:T =M, :”A(xTyn — yT.)dxdy

i[ —|5| are automatically satisfied.

6]:T = HA(xTy“ — YT, )dxdy = _I.[A(X%_Z+ y%ﬂjdxdy

__qf(20w), a(w) _
] (P2 oy (w2 o

— —:Sl (yy,dx — xy,dy) + 2 I IAW dxdy =2y, A + ZHAl// dxdy

= |T= Z”Awdxdy + 2w, A

 For multiple holes: |1 =2[[ ydxdy+2> A
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Hollow Elliptical Section

For this case lines of constant shear stress coincide x> =y . 2y
with both inner and outer boundaries, and sono ~ ¢@° (&b’

stress will act on these lateral surfaces. Therefore, 2;\&
hollow section solution is found by simply _\ x
removing inner core from solid solution. This \\y ]
gives same stress function and stress distribution

In remaining material.
) v a’h*Ga ( x* oy _1j

+
a’+b*la® b?

Constant value of stress function on inner boundary is: v, =

a’h’Ge , ,
a’ +b’ (k _1)'
Load carrying capacity is determined by subtracting load carried by the removed

inner cylinder from the torque relation for solid section

- _ma’Ga _z(ka)'(kb)’Ga _ 1Ga

= a’b’(1-k*
a?+b?  (ka)’+(kb)?  a’+b’ d=K)

2T 1

Maximum stress still occursatx=0andy=#b: 7 . = :
" rab® 1-k*
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Closed Thin-Walled Tubes

 Thin wall thickness implies that the TN
membrane slope BC can be approximated//
by a straight line.
* Since the membrane slope equals — s
resultant shear stress: z(s) =y, /t(s). "
e Determine the value of y:

Tube Centerline

~-—.

2GaA ~—

CJSS 7(s)ds=2GaA = y, = 7~ Where S = length of tube centerline,

i <fs t()ds A, = area enclosed by tube centerline.

- - ¢ S

* Load carrying relation: -

T =2[[ ydxdy + 2y,A = Z(A%j 1 2uA = 2p,A. B S Membrane

where A = section area, A, = area enclosed by S,. /
e Combining these relations: V1

T T T 1 Y
=—| |r(s)= o= ——ds
= oal O 2at0)| |* " 20m C}Ssct(s) Al B

* 7., 0CCUIS across the narrowest wall. (Section aa) "



Open vs. Closed Thin-Walled Tubes

» Cut creates an open tube and produces
significant changes to stress function,
stress field and load carrying capacity. |

 Open tube solution can be approximately \\
determined using results from thin ‘
rectangular solution.

» Stresses for open and closed tubes can be
compared and for identical applied torques,
the following relation can be established

& cut

3T
T ] T
OpenTube AL _ 6i, but since A, >> A = —2NT¥%¢ 51
z-Closed Tube - A z-Closed Tube
2At

— z-Open Tube >> z-Closed Tube

. Stresses are higher in open tube and thus closed tube is stronger. i



Outline

 Elastic Cylinders with End Loading

« Torsion of Cylinders: General formulation
 Stress-Function Formulation

e Displacement Formulation

 Membrane Analogy

« Solution: Boundary Equation Scheme

« Solution: Fourier Method — Rectangular Section
 Multiply Connected Cross-Sections
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